• Title/Summary/Keyword: Soil erosion loss

Search Result 239, Processing Time 0.029 seconds

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 2. Characteristics of Runoff and Soil Erosion (제초제 처리 과수원 포장에서 강우 사상의 효과. 2. 유거와 토양침식의 변화)

  • Chung, Doug-Young;Park, Mi-Suk;Lee, Kyu-Seung;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • Changes in runoff and soil erosion at slightly hilly erosive plots with pear trees over a three-year period were monitored under two distinct types of weed treatment by herbides : (1) pre-emergence herbicide with glyphosate; (2) post-emergence herbicide with paraquat. The numbers of rainfall events from June to Nov for three years of experimental periods were approximately 50 times in the plots having 5.5%to 10.2%slope at an altitude of 125 m. The steady-state infiltration rate was generally increased in the bare plot from which all weeds were removed while it was decreased in the herbicide treated plots and control. The runoffs from the control plot during the experimental periods were always less than those from plots of the herbicide-treated and the bare. The runoff under the same rainfall intensity was decreased in the order of bare, glyphosate, paraquat, and control. This results indicated that the removal time of weed by the different types of herbicides might influenced the runoff rate. For the first two years of the experimental periods, loss of fine fraction was much greater than that of coarse fraction while soil loss was correlated neither with total rainfall nor amount of runoff. The soil erosion rate under the same rainfall intensity was increased in the order of control, glyphosate, paraquat, and bare plot. However, there were not much differences in the soil loss for all plots under a relatively lower rainfall intensity less than 30 mm $day^{-1}$, resulting in rainfall intensity was important factor on soil erosion.

Suspended Solids Export by the Outflowing Water from Irrigation Paddy Field during Rice Growing Season of Korea

  • Zhang, Yongseon;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa;Kim, Min-Kyeong;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.218-225
    • /
    • 2016
  • This experiment was conducted in Suwon and Iksan city from 2012 to 2014 to evaluate soil erosion and nutrient loss from irrigated paddy fields during cropping period. Rainfall amount and rainfall erosivity of $EI_{30}$ were, on average, 1,026 mm and $3,922mm\;ha^{-1}yr^{-1}hr^{-1}$ for the cropping period, respectively, and the rainfall event with maximum $EI_{30}$ occurred in July. Annual average of runoff was $2,508MT\;ha^{-1}yr^{-1}$ in Suwon and $3,375MT\;ha^{-1}yr^{-1}$ in Iksan, accounting for 36% of rainfall of the cropping period. Nutrient loss by runoff, on average, was $7.0kg\;N\;ha^{-1}yr^{-1}$, $1.3kg\;P\;ha^{-1}yr^{-1}$, and $16.6kg\;K\;ha^{-1}yr^{-1}$; N, P, and K loss were 5.0, 0.6, and $8.3kg\;ha^{-1}yr^{-1}$, respectively, in Suwon and 8.9, 1.9, and $16.7kg\;ha^{-1}yr^{-1}$ in Iksan. Soil loss in Korean paddy rice was evaluated as $0.33MT\;ha^{-1}yr^{-1}$ ranging from $0.05MT\;ha^{-1}yr^{-1}$ to $0.88MT\;ha^{-1}yr^{-1}$. Amount of soil loss, however, depended on areas and year influenced by variation of rainfall amount and intensity. Interestingly, soil erosion in Iksan in 2012 was remarkably greater than those in other periods due to heavy rainfall between late May and June with soil flake dispersion right after the rice-planting season.

A Study of Distribution of Rainfall Erosivity in USLE/RUSLE for Estimation of Soil Loss (토양유식공식의 강우침식도 분포에 관한 연구)

  • Park, Jeong-Hwan;U, Hyo-Seop;Pyeon, Jong-Geun;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.603-610
    • /
    • 2000
  • Climate factors such as rainfall, temperature, wind, humidity, and solar radiant heat affect soil erosion. Among those factors, rainfall influences soil erosion to the most extent. The kinetic energy of rainfall breaks away soil particles and the water flow caused by the rainfall entrains and transport them downstream. In order to estimate soil erosion, therefore, it is important to determine the rainfall erosivity. In this study, the annual average Rainfall Erosivity(R) in Korea, an important factor of the Universal Soil Loss Equation(USLE) and Revised Equation(RUSLE), has been estimated using the nationwide rainfall data from 1973 to 1996. For this estimation, hourly rainfall data at 53 meterological stations managed by the Meterological Agency was used. It has been found from this study that the newly computed values for R are slightly larger than the existing ones. It would be because this study is based on the range of rainfall data that is longer in period and denser in the number of gauging stations than what the existing result used. The final result of this study is shown in the form the isoerodent map of Korea.

  • PDF

Study on Quantifying Erosion Control Function of Forest (산림의 토사유출 방지기능에 관한 연구)

  • Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • This study was carried out to know how erosion control function of forests varies as forests develop in watersheds. The erosion control function among the forest welfare functions can be estimated by comparing sediment yield in stocked with non-stocked area. Sediment yield of reservoirs in stocked area were collected from farmland improvement associations. The sediment yields in non-stocked area were using USLE (Universal Soil Loss Equation) in the same reservoirs. Forests' erosion control function estimated by differences of the sediment yield between stocked and non-stocked area was static model because of no consideration on forest aging. Dynamic model was developed to consider a forest stand age. The model comprises the relationship between average forest age in watershed and sediment yield. The amount of sediment yield was different depending mother rocks. It decreased exponentially according to the forest's grow up. In case of igneous rock, the volume of sediment yield $Y_{ig}=1.4431e\;^{0.023x}$(x=average forest age), metamorphic rock $Y_{me}=4.7115e\;^{0.0694x}$, and sedimentary rock $Y_{se}=1.2808e\;^{0.028x}$.

Analysis of effect that land cover change get in Soil Loss by Forest fire (산불에 의한 토지피복변화가 토양유실에 미치는 영향분석)

  • 양인태;김재철;유영걸;오명진
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.353-358
    • /
    • 2003
  • Soil loss by the rains has effect on natural environment. But It is difficult to find out the data that is surveyed in watershed. In this paper, we chose USLE erosion model, which could be connected easily with GSIS and available generally, and extracted factors which is entered model by using GSIS spatial analysis method. Especially, As revised USLE model, It should be applied in watershed and as it calculated soil loss before forest fire and behind, it analysed the degree that it have an effect on soil loss. Each analyzed factors and the result of soil loss estimate consist of 22m-pixel size, we could identify soil loss by each pixel and distribution form.

  • PDF

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

Estimation of Soil Erosion Using National Land Cover Map and USLE (USLE와 국가토지피복지도를 이용한 토양유실 추정)

  • Jeong, JongChul
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.525-531
    • /
    • 2016
  • This study integrates the Universal Soil Loss Equation(USLE) with GIS method to assess the soil erosion for national land cover map between 2007 and 2014. The land cover change map and C factors of USLE were applied to the estimation of spatial distribution of sediment yield. However, they generated distinct results because of differences in their applied methods and calculation processes of national land cover map. To generate the USLE model, C factors of MOE(Ministry of Environment) were compared with soil erosion of Inje stadium development area at the Naerin watershed in Gangwon province to 2014. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion calculation. The land cover change were carried with level-2 and high level land cover map of MOE and estimated maximum double of soil erosion.

A Study on the value decision and the application method of USLE factors for the soil loss estimation in the large scale site development area using GIS-In the Case of BuJu Mountain in MokPo City- (GIS를 이용한 대규모 단지 개발지의 토양유실량 추정을 위한 USLE의 인지값 결정과 적용 방법에 관한 연구-목포시 부주산을 대상으로-)

  • 우창호;황국웅
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.3
    • /
    • pp.115-132
    • /
    • 1996
  • The purpose of this study is to estimate the soil loss amount with Geographic Information System according to the land use change of Buju mountain area in Mokpo city. To estimate the soil loss, Universal Soil Loss Equation which is the most proper technique to predict soil loss in this site condition is adopted and IDRISI, a raster GIS software, is used. GIS application with USLE is very efficient to estimate soil loss accurately and fastly. In order to decide value and to find application method of USLE factors, we used existing rainfall erosion index, soil erodibility analysis, slope length, slope steepness, vegetation management and practices, which are rated by GIS through the analysis of various studies related USLE. The result of this study was compared with the previous other researches to verify our method of constructing numerical data of USLE's factors. The result of verification of our way showed significance for the soil loss in forest area. But the result of verification for the soil loss in forest area. But the result of verification for the soil loss of cultivated area showed some errors. It seems that this result was due to local variation of topographical map.

  • PDF

Development of a GIS Method for the Automatic Calculation of LS Factor of USLE (GIS를 이용한 USLE 지형인자(LS) 자동계산 방법에 관한 연구)

  • 우창호;황국웅
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.162-177
    • /
    • 1998
  • Conentionally, LS factor for the USLE suggested by Wischmeier has been computed manually on topographic maps based on one dimensional approach. But outcomes of the equation could be severely affected by the convergence and divergence of surface runoff at complex terrains. Thus the objective of this research are to develop a method to automatically compute LS factor based on the multiple flow algorithm, and to test the accuracy of this method by comparing outcomes of this method to previous measurements or estimations of soil erosion. The program for the automatic calculation of LS factor was developed by utilizing Fox Pro 4.5, and outcomes of the program is designed to input to IDRISI. The accuracy test of LS factor was carried out by comparing the actual measurements of soil loss at two test sites in and around of Suwon. The calculated volume of soil erosion at Buju mountain, Mokpo, was also compared to the outcome of a previous research based on the LS factor calculated by the conventional onedimensional approach. The outcomes of this research are as follows. First, the computed L based on the multiple flow algorithm for concae slopes are greater than those of convex slopes,. Second, the estimated soil loss based on this method at the test site in Mokpo is much greater than the outcomes based on the conventional one-dimensional approach. It can e concluded that the application of this automatic calculation method of LS factor can improve the accuracy of USLE and facilitate soil erosion prevention methods.

  • PDF

Effect of By-product Gypsum on Soil Erosion at Burned Forest Land (부산물 석고를 이용한 산불피해 지역 토양유실 방지)

  • Kim, Kye-Hoon;Jung, Chang-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.52-59
    • /
    • 2000
  • This study was carried out to find out effect of by-product gypsum on reducing soil erosion at the sloping burned area at Sampo-ri, Gosung-gun in Kangwon-province during the period between June 28 and Sept. 30, 2000. Four experimental plots ($1.2m{\times}10m$) were prepared at the study area with slopes $15^{\circ}{\sim}18^{\circ}$ where forest fire took place twice during last 4 years. Phosphogypsum (PG) was applied to the soils of the 4 plots at the rates of 0 (control), 5, 7.5, and 10 ton/ha, respectively. Amount of rainfall, runoff, and soil loss were measured 7 times during the study. In the beginning, the amounts of runoff and soil loss from the PG treated plots were not different from those from the control plot due to steepness of the plots. However, the difference between the amount of runoff and soil loss from the PG treated plots and those from the control became apparent over time. The effect of PG treatment lasted until at least 870 mm of rainfall. Compared to the cumulative runoff from the control plot, the cumulative runoff from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 7%, 31 %, and 35%, respectively. The cumulative soil loss from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 44%, 53%, and 77% compared to that from the control plot. Strong acidity of PG (pH 2.0~2.5) did not affect the acidity of the soil and runoff.

  • PDF