• Title/Summary/Keyword: Soil column test

Search Result 251, Processing Time 0.032 seconds

Analysis of Rainfall Infiltration Velocity in Unsaturated Soils Under Both Continuous and Repeated Rainfall Conditions by an Unsaturated Soil Column Test (불포화토 칼럼시험을 통한 연속강우와 반복강우의 강우침투속도 분석)

  • Park, Kyu-Bo;Chae, Byung-Gon;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.133-145
    • /
    • 2011
  • Unsaturated soil column tests were performed for weathered gneiss soil and weathered granite soil to assess the relationship between infiltration velocity and rainfall condition for different rainfall durations and for multiple rainfall events separated by dry periods of various lengths (herein, 'rainfall break duration'). The volumetric water content was measured using TDR (Time Domain Reflectometry) sensors at regular time intervals. For the column tests, rainfall intensity was 20 mm/h and we varied the rainfall duration and rainfall break duration. The unit weight of weathered gneiss soil was designed 1.21 $g/cm^3$, which is lower than the in situ unit weight without overflow in the column. The in situ unit weight for weathered granite soil was designed 1.35 $g/cm^3$. The initial infiltration velocity of precipitation for the two weathered soils under total amount of rainfall as much as 200 mm conditions was $2.090{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.692{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively. These rates are higher than the repeated-infiltration velocities of precipitation under total amount of rainfall as much as 100 mm conditions ($1.309{\times}10^{-3}$ to $1.871{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $1.581{\times}10^{-3}$ cm/s, respectively), because the amount of precipitation under 200 mm conditions is more than that under 100 mm conditions. The repeated-infiltration velocities of weathered gneiss soil and weathered granite soil were $1.309{\times}10^{-3}$ to $2.854{\times}10^{-3}$ cm/s and $1.175{\times}10^{-3}$ to $2.012{\times}10^{-3}$ cm/s, respectively, being higher than the first-infiltration velocities ($1.307{\times}10^{-2}$ to $1.718{\times}10^{-2}$ cm/s and $1.789{\times}10^{-2}$ to $2.070{\times}10^{-2}$ cm/s, respectively). The results reflect the effect of reduced matric suction due to a reduction in the amount of air in the soil.

복합오염물질 처리를 위한 Hybrid PRB System

  • 김상태;강완협;문희선;민지은;조종수;박주양;김재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.129-132
    • /
    • 2004
  • A hybrid permeable reactive barriers(hybrid PRBs) composed of Fe(II) PRB, biological PRB and sorptive PRB was investigated to treat groundwater with multiple contaminations. We performed batch, column and pilot tests to determine removal rates and design parameters of each PRB media, and operated two hybrid PRB systems with pilot-scale barriers in series. The pilot test of the hybrid PRB system with the combination of Fe(II), biological media and black shale showed multiple contaminations could be removed in ground water. Nitrate could be treated below 20 mg/L and Cr(VI) was treated down to 0.05 mg/L. TCE was degraded below 0.001 mg/L in system. The hybrid PRB system with a proper combination of PRBs could remediate ground water with multiple contaminations.

  • PDF

Allelopathic Potential and Substances from Cork Tree (Pbellodendron amurense Rupr.)

  • Park, Young-Goo;Choi, Myung-Suk;Yang, Jae-Kyung;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.92-98
    • /
    • 2001
  • Allelopathic effects of the cork tree (Phellodendron amurense Rupr.) on several crops and soil miro-organisms were assessed using germination bioassay and antimicrobial assay, and allelochemicals were identified. In a germination bioassay, extract of cork tree inhibited at high concentration on germination of several crop seeds such as cabbage, lettuce, and cucumber. However, aqueous extracts inhibited powerfully growth of test organisms such as Streptococus aureus, S. aureus, S. typhimurium, and E. coli as bacteria, and Candida albicans as yeast, and Botrytis cineria and Alternata alternaria as fungi.. The cork tree extract showed strong antimicrobial activities against isolated soil fungi. The allelochemicals were separated using Silica gel, Sephadex LH-20 gel column chromatography and HPLC. The substances were analyzed by UV spectrometry and EI-mass spectrometry. The active allelochemicals were identified as isoquinoline alkaloids, berberine and palmatine.

  • PDF

A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area (폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

Evaluation for Contents of Contaminants and Leaching Characteristics of Bottom Ash (바텀애쉬의 유해물질 함량 측정 및 용출특성 평가연구)

  • Koh, Taehoon;Lee, Sungjin;Shin, Minho;Kim, Byongsuk;Lee, Jeakeun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.77-83
    • /
    • 2010
  • In this study, we tried to determine any detrimental effects on water quality when bottom ash obtained from a coal-fired power plant intended to be used as a fill material in construction sites. Physical-chemical properties of bottom ash were determined using proximate analysis, elemental analysis, XRD, and XRF. Classification of bottom ash as a waste material and soil contamination due to the use of bottom ash were performed by Korea waste standard leaching test and soil toxicity test, respectively. Results of leaching tests were compared to the regulations for water quality and groundwater quality and no harmful effects on water quality were found. Most of heavy metals in leachate were below detection limits but trace amount of $Cr^{6+}$ was found. However, concentration of $Cr^{6+}$ was below the regulation criteria. Column leaching tests indicated that concentrations of Pb and Zn were slightly higher than regulations but below regulations within 1 PVE, but concentrations of sulfate were 10 times higher than regulation and thus, the required time to reach regulation was almost 8 PVE.

Fundamental Study for Compaction Methods by Mechanical Tests (역학적 시험에 의한 다짐방법의 적합성 평가를 위한 기초연구)

  • Seo, Joo-Won;Choi, Jun-Seong;Kim, Jong-Min;Roh, Han-Seong;Kim, Soo-Il
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.23-35
    • /
    • 2003
  • In this study, compaction evaluating program based on ASTM critria is developed bu analyzing the results of laboratory tests. And the laboratory tests such as compaction test, triaxial test and resonance column test of subgrade soils are performed to develop compaction management methodology at seven test sites. Especially, to figure out chararteristic with changing compactive efforts, the test was carried out at five levels of compactive efforts at each soil sample. Database was set up from the test results. With the methodology using mechanical property - the elastic modulus, the gap between road design and management and road construction management is narrowed. The regression equation of G/$G_{max}$ is proposed at each strain level of subgrade soils according to AASHTO criteria, and the relationship between fundamental properties of soil mass and degree of compaction is derived as well. The development of compaction management and field compaction management method is proposed by the elastic modulus based on mechanical tests.

  • PDF

The effects of End Platens on Effective Stresses in Resonant Column (RC) Specimens during Consolidation (공진주 시험기 단부가 압밀중인 시료의 유효응력에 미치는 영향)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.29-42
    • /
    • 2008
  • The objective of this study is to investigate the effects of rigid end platens on effective stresses in soil mass during consolidation. The friction between the teeth of top cap/base pedestal and the specimen during consolidation decreases the radial and tangential effective stresses in RC specimens. However, it is unpractical to measure the effective stresses in the soil specimen. Two approaches were used to evaluate the state of stress in RC specimens during consolidation. First, careful measurements were made of small strain shear modulus, $G_{max}$ in specimens with carefully controlled void ratios and stress histories, to infer the state of stress. And second, a finite element analysis was performed to analytically evaluate the effect of various soil parameters on the state of stress in RC specimens during consolidation. By combining these experimental and analytical results, an example was performed to predict the average state of stress in RC specimens during consolidation.

Bearing Capacity and Environmental Assessment on Ground with By-product Lime (부산석회 재활용 부지에 대한 지지력 및 환경영향 평가에 관한 연구)

  • Chung, Ha-Ik;Hong, Seung-Seo;Lee, Yong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.897-903
    • /
    • 2004
  • Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. Currently about 320 millon tons of waste lime are accumulated and annually 100,000 tons are producted. Reuse of waste lime mixed with soil for banking and backfill materia in civil works was analysed in this study. This study was Carried out to investigate the geotechnical and environmental characteristics on field application. Field investigations were conducted on the road construction site in Incheon. This study presents the results of the engineering characteristics in field test and the leaching characteristic of waste lime in laboratory column tests. Countermeasure for reduction of environmental effects was suggested from the test results.

  • PDF

A Field Test Study on stress concentration ratio of Crushed-Stone Column Pile (쇄석다짐말뚝의 응력분담비에 관한 현장실험 연구)

  • Lee, Min-Hee;Im, Jong-Chul;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.525-532
    • /
    • 2004
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. The stress concentration ratio was the range of 1.7 to 3.0 and the higher it was the more replacement rate was increased.

  • PDF

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.