• Title/Summary/Keyword: Soil cement

Search Result 614, Processing Time 0.023 seconds

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

Effect of cement dust on soil physico-chemical properties around cement plants in Jaintia Hills, Meghalaya

  • Lamare, R. Eugene;Singh, O.P.
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.409-417
    • /
    • 2020
  • Investigation was carried out to assess the effect of cement dust deposition on the physico-chemical properties of soil near some cement plants in Jaintia Hills, Meghalaya. Soil samples were collected and analysed and compared with the control site. Comparison of various soil physico-chemical parameters revealed that cement dust emanating from cement plants has changed the soil quality in the surrounding areas of cement plants. The normal soil pH in the area is generally acidic. However, due to the continuous deposition of cement dust soil pH was found slightly alkaline near the cement plants. The higher values of soil parameters such as electrical conductivity and bulk density were also noticed near the cement plants. However, lower values of water holding capacity, soil moisture content, soil organic carbon and total nitrogen content were found compared to the control sites. The effect of cement dust deposition on soil is more in areas nearer to the cement plants. At present the changes may not be so serious but if this trend continues, soil properties of a vast area around the cement plants are likely to change leading to multiple effects on flora, fauna and socio-economy of the area.

Containing Heavy Metal Contaminants Using Soil-Cement Column Barrier (심층혼합기둥체 차수벽을 이용한 중금속 오염물질의 이동 제어)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.821-826
    • /
    • 2003
  • Laboratory experiments were peformed to understand physical properties of soil-cement column under the influence of acidic flow including metal contaminants and its retaining capacity against metal migration. The contaminant used in this study was nitric acid with Cu and Cd. The Permeability of soil-cement column decreased when pH of the column began to drop below 12. Decreases in pH led to significant reduction of compressive strength of clayey soil-cement specimen, while relatively marginal reduction for sandy soil-cement specimen. The metal contaminants did not leachate from soil-cement column until pH of soil-cement dropped below 7∼8 for Cu and 9∼10 for Cd. Metal contaminants were precipitated and trapped inside the soil-cement column at pHs higher than those mentioned as verified with metal analysis and visual inspection. This indicated that soil-cement column not only performs well as a cut-off wall, but also helps alleviating the level of contamination of the surrounding environment.

  • PDF

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

Structural and Fatigue Analysis for soil-Cement Stabilized Base and Subbase of Road (Soil-cement 안정처리 도로 기층 및 보조기층의 구조 및 피로해석)

  • 도덕현;조래청
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10a
    • /
    • pp.43-50
    • /
    • 1993
  • It has been past for many years that soil-cement used in the field of roadway pavement in America and Europe. Though the design and construction criteria on soil-cement pavement have been well setablished in Korea's specificaions, this method has not been applied in roadway pavements, in practices. It is mainly caused by the lacks of experiences in soil-cement pavement design and construction. In this study, the problems of soil-cement pavement in use were explored, and the structure and fatigue like of soil-cement bases and subbases were estimated.

  • PDF

Changes of Performance of Soil-Cement Barrier due to Migration of Acids (산 이동에 따른 심층혼합기둥체 차수벽의 성능변화)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

Individual and combined effect of Portland cement and chemical agents on unconfined compressive strength for high plasticity clayey soils

  • Yilmaz, Yuksel;Eun, Jongwan;Goren, Aysegul
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.375-384
    • /
    • 2018
  • Unconfined compressive strength (UCS) of high plasticity clayey soil mixed with 5 and 10 % of Portland cement and four chemical agents such as sodium hexametaphosphate, aluminum sulfate, sodium carbonate, and sodium silicate with 0, 5, 10, and 20% concentrations was comparatively evaluated. The individual and combined effects of the cement and chemical agents on the UCS of the soil mixture were investigated. The strength of the soil-cement mixture generally increases with increasing the cement content. However, if the chemical agent is added to the mixture, the strength of the cement-chemical agent-soil mixture tends to vary depending on the type and the amount of the chemical agent. At low concentrations of 5% of aluminum sulfate and 5% and 10% of sodium carbonate, the average UCS of the cement-chemical agent-soil mixture slightly increased compared to pure clay due to increasing the flocculation of the clay in the mixture. However, at high concentrations (20%) of all chemical agents, the UCS significantly decreased compared to the pure clay and clay-cement mixtures. In the case of high cement content, the rate of UCS reduction is the highest among all cement-chemical agent-soil mixtures, which is more than three times higher in comparison to the soil-chemical agent mixtures without cement. Therefore, in the mixture with high cement (> 10%), the reduction of the USC is very sensitive when the chemical agent is added.

An Experimental Study on the Quality Characteristics of Soil-Cement for Deep Mixing Method Using Carbon Capture Minerals(CCM) (이산화탄소 포집광물을 활용한 심층혼합처리용 Soil-Cement의 품질 특성에 관한 실험적 연구)

  • Jung, Woo-Yong;Ju, Hyang-Jong;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.153-160
    • /
    • 2020
  • In this study, the optimum ratio of soil-cement was derived to utilize carbon capture minerals(CCM) as soil-cement for deep mixing method, quality characteristics of soil-cement mixed with carbon capture minerals were evaluated. The CCM is generated in the form of a slurry, and as a result of evaluating water content, it was found to be about 50%. Accordingly, the water content of CCM was removed in the unit water of Soil-cement mix. As a result of field mixing of soil-cement using CCM on field soil, it showed that the design allowable bearing capacity was satisfied by showing 3.0MPa or more as of 28 days of age. As a result of the hazard verification of carbon capture minerals, 0.055mg/L of Cu was detected, but satisfies the acceptance criteria, and no other harmful substances were eluted.

Study on the phase change and engineering properties of soil cement (Soil cement의 응결과정에 따른 상변화 및 역학특성)

  • Kim, Seong-Pil;Chang, Pyoung-Wuck;Cha, Kyung-Seob;Won, Jeong-Youn
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.195-198
    • /
    • 2003
  • A small amount of cement can be added to the soil with high water content to improve its engineering properties. It is difficult to point out the exact time when liquified state of soil is transformed into semi-plastic or plastic states when high water content soil is hydrated by cement. In this study fall cone penetration are used to explain the phase change and compactable status of soil cement. And engineering properties of soil cement compacted in plastic state are investigated. Results reveal that fall cone penetration depth of 1mm or less is judged to a compactable state of soil-cement. Permeability and CBR values of soil cement increased with mixing ratio increased.

  • PDF

A Study on the Physical Characteristics of Soil-Cement (Soil-Cement의 물리적 성질에 관한 연구)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.3
    • /
    • pp.3533-3538
    • /
    • 1974
  • This study was attempted in order to search for physical properties of sail cement. In this study, soil samples were specified according to soil particle analysis and used for compaction, strength, abrasion, absorption tests respectively according to different cement contents. Cement content sused in each treatment were 6%, 8%, 10% and 12% of total weight of soil-consent mixture. In the test, compressise strengths of the specimens were measured at the following ages; 3 days, 7-days, 14-days, 21-days and 28-days. Abrasion and absorption tests of the specimens were carried out at the 7-days age only. The results obtained from the tests are summarized as follows; 1. As the cement contents were in creased, the compressive strengths of soil-cement were almost proportionally increased. 2. The Compressive strength of soil-cement was not always proporportional to ages. The gradient of compressive strength of the soil-cement was steeper as the cement content was rucreased. 3. As the cement content was increased, the amount of the weight loss of the samples due to the abrasion was decreased remarkably, giving no abrasion for about 8% of the cement content. 4. As the cement content was increased, the absorption ratio of the specimens was not changed remarkably.

  • PDF