• Title/Summary/Keyword: Soil bacteria

Search Result 1,324, Processing Time 0.025 seconds

Isolation of Calcite Forming Bacteria and Soil Bio-consolidation with Various Calcium Salts (탄산칼슘 생성 균주의 분리 및 다양한 칼슘원에 따른 토양 고결화)

  • Gu, Takyong;Kang, Chang-Ho;Shin, Yujin;So, Jae-Seong
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.206-211
    • /
    • 2017
  • The physical method used to prevent a landslide has the risk of environmental pollution. Calcite forming bacteria (CFB) have been received increasing attention as a novel and environmental friendly strategy for the soil improvement. In this study, we selected 11 CFB strains with high calcite production. We also examined survivability and calcite productivity of the strains under various stress conditions to select strains with high resistance to various stresses. Two strains was selected by environment stress. Sphingobacterium sp. KJ-32 and Viridibacillus arenosi B-25 precipitate calcite more than other strains at pH 5 and $15^{\circ}C$ respectively. Bio-consolidated soil cakes were made using various calcium salts (calcium chloride, calcium acetate, calcium lactate, calcium gluconate) with mixed culture of 2 strains. Among them, the calcite made using calcium chloride was the largest. These observations demonstrate that this bio-consolidation technology has the potential for eco-friendly prevention of landslide and soil improvement.

Population Variations of Cylindrocarpon destructans Causing Root Rot of Ginseng and Soil Microbes in the Soil with Various Moisture Contents (토양수분 함량에 따른 인삼 뿌리썩음병균 Cylindrocarpon destructans 및 토양미생물의 밀도 변화)

  • 박규진;유연현;오승환
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.100-104
    • /
    • 1997
  • Influence of the moisture content in soils was examined on population variations of soil microbes, including Cylindrocarpon destructans causing root rot of ginseng, in vivo and under the field condition. Fungal populations decreased in soils treated with various moisture contents in vivo as days after the treatment in creased, but there was not a significant difference in the population among other treatments except 135% moisture content (flooding) at 15 weeks after the treatment. In flooded soils populations of total fungi and C. destructans were reduced to 1/10 and 1/50 of initial populations, respectively. There was, however, a little difference in the population of total bacteria or Actinomycetes between before and at 15 weeks after flooding. On the other hand, population variations of bacteria and Actinomycetes were much greater than those of fungi at different intervals after the moisture treatment. Variations of microbial populations in flooded soils under the field condition were similar to those in vivo. Especially, populations of Fusarium and pectolytic bacteria in flooded soils were reduced to 1/100 of populations in nonflooded soils at 170 days after treatment.

  • PDF

Heavy Metals Immobilization in Soil with Plant-growth-promoting Rhizobacteria and Microbial Carbonate Precipitation in Support of Radish Growth

  • He, Jing;Zhang, Qiuzhuo;Achal, Varenyam
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.223-229
    • /
    • 2020
  • The application of plant-growth-promoting rhizobacteria (PGPR) supports the growth of plants in contaminated soil while ureolytic bacteria can immobilise heavy metals by carbonate precipitation. Thus, dual treatment with such bacteria may be beneficial for plant growth and bioremediation in contaminated soil. This study aimed to determine whether the PGPR Pseudomonas fluorescens could work in synergy with ureolytic bacteria to assist with the remediation of cadmium (Cd)- and lead (Pb)-contaminated soils. Pot experiments were conducted to grow radish plants in Cd- and Pb-contaminated soils treated with PGPR P. fluorescens and the results were compared with dual inoculation of P. fluorescens combined with ureolytic Staphylococcus epidermidis HJ2. The removal rate of the metals from the soil was more than 83% for Cd and Pb by the combined treatment compared to 17% by PGPR alone. Further, the dual treatment reduced the metal accumulation in the roots by more than 80%. The translocation factors for Cd and Pb in plant tissues in both treatments remained the same, suggesting that PGPR combined with the carbonate precipitation process does not hamper the transfer of essential metal ions into plant tissues from the soil.

Evaluation of Ammonia Removal Mechanisms and Efficiencies Through Batch Experiments (배치 실험을 이용한 암모니아 제거 기작 및 효율 평가)

  • Jang, Jieun;Kang, Jiyoung;Kim, Hye Won;Shin, Kyu Jin;Jeen, Sung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.37-46
    • /
    • 2022
  • As the amount of livestock wastewater increases, ammonia contamination in surface water and groundwater is also increasing, and its treatment is urgently needed. In this study, indigenous soil bacteria was utilized for ammonia removal in artificial wastewater and associated removal mechanisms and efficiencies were evaluated. Two batch reactors were configurated to contain natural soil and artificial wastewater at 1:10 mass ratio, and incubated for 84 and 168 hours, respectively. The results showed that ammonia was completely removed within 48 and 72 hours in the first and second reactors, respectively. There were no significant changes in ammonia concentrations in the control groups without soil. Nitrate was formed in the reactors, indicating that the main removal mechanism of ammonia was nitrification by nitrifying bacteria. Nitrate was further converted to nitrogen gas by denitrification in the anaerobic environment, which was caused by consumption of oxygen during the nitrification process.

Kinetics of Chemical Properties and Microbial Quantity in Soil Amended with Raw and Processed Pig Slurry

  • Suresh, A.;Choi, Hong L.;Zhukun, Zhukun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.732-739
    • /
    • 2009
  • Pig slurry is a good soil amendment not only because of its high organic matter content, but also because of its ability to provide various nutrients. The objective of this study was to estimate the influence of raw and processed pig slurry application on pot soil over chemical fertilizer and non-amended control soil. Change in the chemical parameters (pH, organic matter (OM), organic carbon (OC), macro and micronutrients) and microbial mass of the treated soils were monitored over 30 to 90 days. Pot soil was treated with the recommended dose of pig slurry and chemical fertilizer, and was sampled after 30, 60 and 90 days of incubation. The least significanct difference (p<0.05) was observed on Fe, Cu, Zn, available P and K between treatments. All treatments increased N, P and K content and microbial mass of soil over control soil. Interestingly, no significant effects were detected on OM, OC, total bacteria, actinomycetes and fungi mass in soil irrespective of treatments given. However fungal and bacterial counts, as well as available nutrients, were found to be higher in processed slurry (PS)-treated soil compared to other soils. In general a significant correlation existed between the fungal count and OM, OC, Zn, T Kjeldahl N (TKN), available P and K of soil. A strong negative correlation was observed between pH and Fe in soil. This study clearly demonstrated that the use of processed manure as a fertilizer could be a key for sustainable livestock agriculture.

Biopile의 현장적용을 위한 유류오염토양의 생분해율 평가

  • Yoon, Jeong-Gi;Roh, Hoe-Jeong;Kim, Hyeok;Kim, Jong-Ha;Park, Jong-Gyeom;Lee, Min-Hyo;Jeong, Il-Rok;Koh, Seong-Hwan;Choi, Sang-Il
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.363-367
    • /
    • 2003
  • Batch experiments were performed to determine optimum conditions for biopile. The batch experiments results showed that 12.5 to 17.9% of moisture content was effective to biodegradation of petroleum hydrocarbon regardless of soil texture. Total heterotrophic bacteria populations in the inoculum-treated soil were greater than of the control and nutrient-amended soil in the early stage, but the populations in the inoculum and nutrient-amended soil were not different significantly from those in the latter stage regardless of soil texture. The same trend was observed for petroleum hydrocarbon degrading bacteria populations. The results of the biodegradation capacity experiments showed that there was a decline in the TPH concentrations during the experiments and no significant difference on the biodegradation was observed by treatment in silt soil. Changes of n-C17/pristane and n-C18/phytane ratios in all treated soil were significantly more than those of control. This is a strong indication of biodegradation. The TPH removal rate was calculated at 60% in all treated soil.

  • PDF

Relationship between Number of Soil Micro-organisms and Change of Cropping System (답전(畓田) 윤환시(輪換時) 작부체계(作付體系)와 토양미생물상(土壤微生物相) 변화(變化)와의 관계(關係))

  • Lee, Sang-Kyu;Yun, Sei-Young;Kim, Seung-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.70-76
    • /
    • 1992
  • A field experiment was conducted to find out the influence of cropping systems under rotation of paddy-upland soil on soil microorganisms with specific reference to cations concentration in the soil. The results obtained was summarized as follows. 1. The number of soil bacteria and actinomycetes increased in fallow, continuous cultivation of rice and soybean while the number of fungi decreased. 2. Gram negative bacteria as Pseudomonas spp. and Rhizobium spp. remarkably incerased with increasing Gram positive bacteria of Bacillus subtilis in continuous cultivatio of soybean. 3. The relative population of soil born plant pathogen such as Fusarium spp. Rhizoctionia spp. and Phoma spp. to the total soil fungi was high in cultivation of potato and Chinese cabbage. The ratio of soil plant pathogen to the total soil fungi was high in cultivation of potato with Chinese cabbage. 4. The number of bacteria and actinomycetes was positively correlated with ratio of Ca+Mg/K in soil while negatively correlated with soil fungi.

  • PDF

Mechanisms of Phosphate Solubilization by PSB (Phosphate-solubilizing Bacteria) in Soil (인산가용화 미생물에 의한 토양 내 인산이온 가용화 기작)

  • Lee, Kang-Kook;Mok, In-Kyu;Yoon, Min-Ho;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • Among the major nutrients, phosphorus is by far the least mobile and available to plants in most soil conditions. A large portion of soluble inorganic phosphate applied to soil in the form of phosphate fertilizers is immobilized rapidly and becomes unavailable to plants. To improve the plant growth and yield and to minimize P loss from soils, the ability of a few soil microorganisms converting insoluble forms into soluble forms for phosphorus is an important trait in several plant growth-promoting microorganisms belonging to the genera Bacillus and Pseudomonas and the fungi belonging to the genera Penicillium and Aspergillus in managing soil phosphorus. The principal mechanism of solubilization of mineral phosphate by phosphate solubilizing bacteria (PSB) is the release of low molecular weight organic acids such as formic, acetic, propionic, lactic, glycolic, fumaric, and succinic acids and acidic phosphatases like phytase synthesized by soil microorganisms in soil. Hydroxyl and carboxyl groups from the organic acids can chelate the cations bound to phosphate, thereby converting it into soluble forms.

Distribution and Properties of Soil Microorganisms Isolated from Representative Plant Communities of Mt. Paektu (백두산의 식생에 따른 토양 미생물의 분포 및 특성)

  • 성치남;백근식;김종홍
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_2
    • /
    • pp.575-583
    • /
    • 1998
  • Physicochemical factors, microbial population size and the properties of the bacterial isolates were assessed to find out the nature of soil ecosystem of Mt. Paektu. Samples were obtained from the surface layer of soils on which specific plant community is developed. Average content of moisture, organic matter and avaiable phosphate of the soils were 21.6%, 17.3% and 2.48mg/100g, respectively. These values were similar to those of developing forest soils, but were slightly lower than those of climax ecosystem such as Piagol in Mt. Chiri. The population size of soil bacteria ranged from 2.7 to $202.5{\times}10^5$ CFU/g.dry soil, and the size is somewhat dependent on the content of moisture and oranic matter of the forest soil. A large number of bacteria was able to decompose macromolecules such as starch, elastin and gelatin. While the distribution rate of resistant bacteria to antibiotics was high, that to toxic chemicals was low. This means that the competition between microorgani는 predominate over the interference with artificial behaviour such as spread of pesticides in the surveyed region. Bacterial species composition of each soil was comparatively simple. Pseudomonas, Agrobacterium, Flavobacterium and Xanthomonas which are Gram-negative short rods were widely distributed in the forest soils. The endospore forming Bacillus species were also main constituents of the soil microflroa. any one of the strains was not identified as Azospirillum or Micrococcus which are known to be one of major constituents of the forest soil. for the correct identification of isolates chemotaxonomic studies will be proceeded, and the strains are to be stored in the Type collection Center.

  • PDF

Effect of Plant (Salvia sp.) Growth Using Mixed Microorganisms (혼합 미생물이 식물(Salvia)의 생장에 미치는 영향)

  • Choi, Kyung-Min;Park, Eung-Roh;Ju, Hong-Shin;Yang, Jae-Kyung;Suh, Jeung-Keun;Lee, Sung-Taik;Park, Chang-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 1996
  • Effect of effective microorganisms on the growth of plant (salvia sp.) was investigated. Microorganisms used were photosynthetic bacteria, lactic acid bacteria and yeasts. When photosynthetic bacteria were inoculated to soil by 100 dilution, treated plants showed 160% growth by length compared to control. When photosynthetic bacteria, lactic acid bacteria and yeasts were mixed, diluted by 10 and inoculated to soil, the plants showed 212% growth compared to control. Microbial populations were increased in the treated soil.

  • PDF