Isolation of Calcite Forming Bacteria and Soil Bio-consolidation with Various Calcium Salts

탄산칼슘 생성 균주의 분리 및 다양한 칼슘원에 따른 토양 고결화

  • Gu, Takyong (Department of Biological Engineering, Inha University) ;
  • Kang, Chang-Ho (Department of Biological Engineering, Inha University) ;
  • Shin, Yujin (Department of Biological Engineering, Inha University) ;
  • So, Jae-Seong (Department of Biological Engineering, Inha University)
  • Received : 2017.02.27
  • Accepted : 2017.07.06
  • Published : 2017.09.30


The physical method used to prevent a landslide has the risk of environmental pollution. Calcite forming bacteria (CFB) have been received increasing attention as a novel and environmental friendly strategy for the soil improvement. In this study, we selected 11 CFB strains with high calcite production. We also examined survivability and calcite productivity of the strains under various stress conditions to select strains with high resistance to various stresses. Two strains was selected by environment stress. Sphingobacterium sp. KJ-32 and Viridibacillus arenosi B-25 precipitate calcite more than other strains at pH 5 and $15^{\circ}C$ respectively. Bio-consolidated soil cakes were made using various calcium salts (calcium chloride, calcium acetate, calcium lactate, calcium gluconate) with mixed culture of 2 strains. Among them, the calcite made using calcium chloride was the largest. These observations demonstrate that this bio-consolidation technology has the potential for eco-friendly prevention of landslide and soil improvement.



Supported by : 한국연구재단


  1. Kim, D. H., K. H. Park, M. S. Kim, and S. H. Kim (2015) A study on the effectiveness of injection in environmentally-friendly biogrouting with soil conditions. JKAIS 16: 4276-4283.
  2. van Wijngaarden, W. K., F. J. Vermolen, G. A. M. van Meurs, and C. Vuik (2011) Modelling biogrout: A new ground improvement method based on microbial-induced carbonate precipitation. Transp. Porous Media 87: 397-420.
  3. Harkes, M. P., L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol. Eng. 36: 112-117.
  4. Kumari, D., X. Pan, D. J. Lee, and V. Achal (2014) Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacteriumundae at low temperature. Int. Biodeterior. Biodegrad. 94: 98-102.
  5. Yang, J., X. Pan, C. Zhao, S. Mou, V. Achal, F.A. Al-Misned, M. G. Mortuza, and G. M. Gadd (2016) Bioimmobilization of heavy metals in acidic copper mine tailings soil. Geomicrobiol. J. 33: 261-266.
  6. Dhami, N. K., M. S. Reddy, and A. Mukherjee (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol. Eng. 39: 31-35.
  7. Achal, V., A. Mukerjee, and M. S. Reddy (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr. Build. Mater. 48: 1-5.
  8. Park, K. H. and D. H. Kim (2012) Verification of calcium carbonate by cementation of silt and sand using bacteria. J. Korean Geotech. Soc. 28: 53-61.
  9. De Muynck, W., N. De Belie, and W. Verstraete (2010) Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136.
  10. DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson (2010) Bio-mediated soil improvement. Ecol. Eng. 36: 197-210.
  11. Kim, Y. G., C. H. Kang, S. J. Oh, and J. S. So (2014) Isolation and characterization of calcite forming bacteria from various environments in Korea. KSBB J. 29: 323-327
  12. Kang, C. H. S. H. Han, Y. J. Shin, S. J. Oh, and J. S. So(2013) Bioremediation of Cd by microbially induced calcite precipitation. Appl. Biochem. Biotechnol. 172: 1929-1937.
  13. Hwang, K. S. (1973) Survey on the pH of Soils in Korea. KJSSF 6: 153-158.
  14. Ha, H. S., J. H. Choi, and Y. T. Chung (1984) A study on the soil temperature regimes in the southern part of Korea. J. Inst. Agr. Res. Util. 18: 47-52.
  15. Han, S. H., C. H. Kang, Y. J. Shin, W. S. Yeom, J. H. Jeong, and J. S. So (2014) Sporulation of Lysinibacillus sphaericus WJ-8 isolated from concrete pavement and response to environmental stresses. KSBB J. 29: 188-192.
  16. Gresham, T. L. T., P. P. Sheridan, M.E. Watwood, Y. Fujita, and F. S. Colwell (2007) Design and validation of ureC-based primers for groundwater detection of urea-hydrolyzing bacteria. Geomicrobiol. J. 24: 353-364.
  17. Okyay, T. O., and D. F. Rodrigues (2015) Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation. FEMS Microbiol. Ecol. 91: fiv017. DOI:
  18. Kang, C. H., Y. J. Kwon, and J. S. So (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 89: 64-69.
  19. Albert, R. A., J. Archambault, M. Lempa, B. Hurst, C. Richardson, S. Gruenloh, M. Duran, H. L. Worliczek, B. E. Huber, R. Rossello-Mora, P. Schumann, and H. J. Busse (2007) Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov.. Int. J. Syst. Evol. Microbiol. 57: 2729-2737
  20. Gorospe, C. M., S. H. Han, S. G. Kim, J. Y. Park, C. H. Kang, J. H. Jeong, and J. S. So (2013) Effect of different calcium salts on calcium carbonate crystal formation by Sporosarcinapasteurii KCTC 3558. Biotechnol. Bioprocess Eng.18: 903-908.