• Title/Summary/Keyword: Soil bacteria

Search Result 1,330, Processing Time 0.026 seconds

Isolation and Characterization of Lactic acid bacteria Leuconostoc mesenteroides DB3 from Camellia japonica Flower (백꽃으로부터 분리한 Leuconostoc mesenteroides DB3의 특성)

  • Sam Woong Kim;Da Hye Shin;Sang Wan Gal;Kyu Ho Bang;Da Som Kim;Won-Jae Chi
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.915-922
    • /
    • 2023
  • Lactic acid bacteria (LAB) are widespread in a variety of environments including fermented dairy products, gastroinstetinal and urogenital tracts of human and animals, plant, soil and water. Leuconostoc mesenteroides DB3 was detected by the strongest antibacterial activities among 24 Leuconostoc strains isolated from Camellia japonica flowers. Acid tolerance of L. mesenteroides DB3 existed up to pH 2.5, but the resistance did not show at pH 2.0, which relatively excellent acid resistance existed. Bile acid tolerance was very stable within the test range to 1.2%. L. mesenteroides DB3 exhibited the optimal growth at 30℃, and showed a slight slow growth when compared with L. mesenteroides KCTC3505, which reached a stationary phase at 18 hr. The pH was changed along with the growth curve, but was maintained above pH 3.98. L. mesenteroides DB3 had higher initial antibacterial activities when compared to L. mesenteroides KCTC3505, but it showed similar activities with the standard strain after the latter part of the logarithmic growth phase. Although lactic acid production in L. mesenteroides DB3 was induced by lower amount in the initial part to the standard strain, it was exhibited by similar amounts after the late logarithmic growth phase. Muicin adhesion of L. mesenteroides DB-3 maintained superior to L. mesenteroides KCTC3505. Both strains showed excellent emulsification ability for kerosene. In summary, we evaluate that L. mesenteroides DB-3 has a high potential for application as probiotics owing to its excellent antibacterial activity, acid resistance, bile acid resistance, and muicin adhesion.

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse (식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과)

  • Kim, Dayeon;Lee, Sang-Yeob;Kim, Jung-Jun;Han, Ji-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.833-847
    • /
    • 2016
  • Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Studies on the Ecology of Occurrence and Identification of Typhula Snow Mold of Graminous Plants -II. Several Factors Affecting Growth of Typhula incarnata- (화본과식물에 발생하는 설부소입균핵병균(雪腐小粒菌核病菌)의 동정 및 발생상태에 관한 연구 -II. Typhula incarnata의 생육에 미치는 몇 가지 요인-)

  • Kim, Jin-Won;Lee, Du-Hyung;Shim, Gyu-Yul
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • Typhula incarnata grew over a temperature range of -5 to $20^{\circ}C$ with maximum growth at 10 to $15^{\circ}C$. Sclerotial production for T. incarnata was greatest at the higher temperature. Maximum mycelial growth of this pathogen occurred from pH 5.4 to 6.2. When carbon sources were added to a basal salt medium (Czapek's dox agar) at 5 g carbon sources/l, inulin, soluble starch, galactose, glucose, mannose, manitol, sucrose, maltose, cellobirose, trehalose, raffinose, and dextrin supported growth better than other carbon sources did. Of the twenty-three nitrogen sources tested, glycine, serine, ammonium sulfate, asparagine, asparatic acid, and ${\beta}-alanine$ were the most favorable for mycelial growth of T. incarnata. Cystine and cysteine were poor nitrogen sources. Ammonium salt of nitrogen sources supported growth better than nitrate salt of nitrogen sources. Potato dextrose agar, oat meal agar, and V-8 juice agar were the most favorable for mycelial growth and sclerotial formation. Appropriate addition of pepton to PDA decreased mycelial dry weight, but sucrose supported good growth of T. incarnata. Percent viable sclerotia of T. incarnate buried in bentgrass soil decreased from 2 months after treatment remarkably. Trichoderma riride and bacteria were isolated from non-germinated sclerotia. Live orchard grass leaf pieces within the soil were colonized by T. incarnata better than sterile and unsterile dead leaf pieces at $0^{\circ}C$. Saprophytic ability of T. incarnate on sterile leaf sheath occurred better at $0^{\circ}C$ than at $10^{\circ}C$. Saprophytic microflora consisting of Cladosporium sp., Fusarium sp., Mucor sp., Pythium sp., and unidentified fungi were the competitors for the sterilized and unsterilized substrate, but their colonization was not find on live leaf sheath buried in the soil at $0^{\circ}C$. In the effect of fungicides to Typhula snow mold disease of creeping bentgrass, mixture of polyoxin and thiram was the most effective, followed by iprodione, mixture of iprodione and oxine copper, thiophanate-methyl, myclobutanil, and tolclofos-methyl.

  • PDF

Hazard Analysis of Tomato Farms at the Growing Stage for the Establishment of the Good Agricultural Practices (GAP) (토마토 농산물우수관리제도(GAP)모델 확립을 위한 재배단계 위해분석)

  • Park, Su-Hee;Kwon, Woo-Hyun;Heo, Rok-Won;Kim, Kyeong-Yeol;Shim, Won-Bo;Shim, Sang-In;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.2
    • /
    • pp.152-160
    • /
    • 2012
  • The objective of this study was to analyze hazards for the growing stage of 6 tomato farms (A, B, C; soli farms, D, E, F; Nutriculture farms) located in Gyeongsangnam-do to establish the good agricultural practices (GAP). A total of 144 samples for analyzing hazards collected from cultivation environments (irrigation water, soil, nutrient solution, and air) and personal hygiene (hands, gloves, and cloths) were assessed for biological (sanitary indications and major food borne pathogens) and chemical hazards (heavy metals). Total bacteria, coliform, and fungi were detected at levels of 0.2-7.2, 0.0-6.1, and 0.0-5.4 log CFU/g, mL, hand or 100 $cm^2$, respectively. Escherichia coli were only detected in the soil sample from B farm. In case of pathogens, Bacillus cereus was detected at levels of 0.0-4.4 log CFU/(g, mL, hand or 100 $cm^2$), whereas Staphylococuus aureus, Listeria monocytogenes, E. coli O157, and Salmonella spp. were not detected in all samples. Heavy metals as a chemical hazard were detected in soil and irrigation water, but levels of them were lower than the permit limit. In conclusion, chemical hazard levels complied with GAP criteria, but biological hazards at the growing stage of tomato farms were confirmed. Therefore a proper management to prevent microbial contamination is needed.

Effects of Physico-chemical and Microbiological Inhibitors for Odour gas Evolution in the Fermentation of Liverstock Feces (가축(家畜) 분뇨(糞尿) 발효시(醱酵時) 악취(惡臭)가스 생성억제제(生成抑制劑) 시용(施用) 효과에 관(關)한 연구(硏究))

  • Yun, Sei-Young;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.62-69
    • /
    • 1992
  • A series of laboratory experiment was conducted to find out the effects of physico-chemical, microbiological and commercial inhibitors on the odorous gas evolution in the fermentation of livestock feces. The results obtained were summarized as follows. 1. The rate and amount of evolution of gas were the highest at 7 days after incubation, thereafter gradually decreased until 24 days after incubation. 2. The rate and amount of gases were evolved in order of $CO_2>N_2O>CH_4>NH_3>N_2S$, respectively. 3. The highest amount of methane gas was evolved from the poultry feces, those of carbon dioxide and nitrous oxide were evolved from the pig feces, and that of hydrogen sulfide was dominantly evolved from the cattle feces. 4. Negative correlation were obtained between the total amounts of $NH_3$ and $CH_4$, $CO_2$ and $CH_4$, $N_2O$ and $CH_4$, $N_2O$ and $CH_4$, while positive correlations were obtained between the amounts of $CO_2$ and $N_2O$, $CO_2$ and $NH_3$, and $NH_3$ and $N_2O$, respectively. 5. There was no significantly inhibiting effect obtained that the application of commercial gas inhibitor as VK 88. On the other hand there was significantly inhibiting effect obtained when application of fertile paddy soil and photosynthetic bacteria to the fermentation of livestock feces.

  • PDF

Studies on the Amylase Production by Bacteria (세균(細菌)에 의(依)한 Amylase생산(生産)에 관한 연구(硏究))

  • Park, Yoon-Joong
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.153-170
    • /
    • 1970
  • 1. Isolation and identification of amylase-producing bacteria. The powerful strain A-12 and S-8 were respectively isolated from air and soil after screening a large number of amylase-producing bacteria. Their bacterial characteristics have been investigated and it has been found that all characteristics of strain A-12 and S-8 are similar to Bac. subtilis of Bergey's manual except for the acid formation from a few carbohydrates and the citrate utilization, i.e., the strain A-12 shows negative in the citrate utilization, and the acid formation from arabinose and xylose, S-8 shows negative in the acid formation from xylose. 2. Amylase production by Liquid cultures with solid materials. Several conditions for amylase production by strain A-12 in stationary cultures have been studied. The results obtained are as follows. (1) The optimum conditions are:temperature $35^{\circ}C$, initial pH 6.5 to 7.0 and incubation time 3 to 4 days. (2) The amylase production is not affected by the preservation period of the stock cultures. (3) Among the various solid material, the defatted soy bean is found to be the best for t1e amylase production. However, the alkali treatment of the defatted soy bean gives no effect contrary to the cage of defatted rape seed. The addition of soluble starch to the alkali extract of defatted soy bean shows the increased amylase production. (4) Up to 1% addition of ethanol to carbon dificient media gives the improved amylase production, whereas the above effect is not found in the case of carbon rich media. (5) The amylase production can be increased 2.5 times when 10% of defatted soy bean is admixed to cheaply available wheat bran. (6) The excellent effect is found for amylase production when 20% of wheat bran is admixed to defatted dry milk which is a poor medium. The activity is found to be $D^{40^{\circ}}_{30'}$ 7,000(L.S.V. 1,800) in 10% medium. (7) No significant effect is observed due to the addition of various inorganic salts. 3. Amylase production by solid cultures. Several conditions for amylase production by strain A-12 in wheat bran cultures have been studied and the results obtained are as follows. (1) The optimum conditions: are temperature $33^{\circ}C$, incubation lime 2 days, water content added 150 to 175% and the thickness of the medium 1.5cm, The activity is found to be $D^{40^{\circ}}_{30'}$ 36,000(L.S.V. 15,000) (2) No significant effect is found in the case of the additions of various organic and inorganic substances.

  • PDF

Hazard Analysis for the Application of Good Agricultural Practices(GAP) on Paprika During Cultivation (파프리카의 농산물우수관리제도(GAP)적용을 위한 재배단계의 위해요소 분석)

  • Nam, Min-Ji;Chung, Do-Yeong;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • This study established hazards which may cause risk to human at farm during cultivation stage of paprika. Samples of plants (paprika, leaf, stem), cultivation environments (water, soil), personal hygiene (hand, glove, clothes), work utensils (carpet, basket, box) and airborne bacteria were collected from three paprika farms (A, B, C) located in Western Gyeongnam, Korea. The collected samples were assessed for biological (sanitary indications and major foodborne pathogens), chemical (heavy metals, pesticide residues) and physical hazards. In biological hazards, total bacteria and coliform were detected at the levels of 1.9~6.6 and 0.0~4.610g CFU/g, leaf, mL, hand or 100 $cm^2$, while Escherichia coli was not detected in all samples. In major pathogens, only Bacillus cereus were detected at levels of ${\leq}$ 1.5 log CFU/g, mL, hand or 100 $cm^2$, while Staphylococuus aureus, Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. Heavy metal and pesticide residue as chemical hazards were detected at levels below the regulation limit, physical hazard factors, such as insects, pieces of metal and glasses, were also found in paprika farms. Proper management is needed to prevent biological hazards due to cross-contamination while physical and chemical hazards were appropriate GAP criteria.

Effects of Cultivation Environment and Fruit Ripeness on Microbial Load in Mulberry (재배환경 및 과실 숙도가 오디의 미생물학적 부하량에 미치는 영향)

  • Ryu, Song Hee;Yun, Bohyun;Kim, Hye-Young;Choi, Ah-Hyun;Kim, Se-Ri;Kim, Won-Il;Ryu, Jae-Gee;Han, Sanghyun
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • This study was conducted to investigate the microbial loads in mulberry fruits depending on cultivation environment and fruit ripeness. The population levels of total aerobic bacteria in mulberry fruits collected from open field orchards were higher than those from three plots protected within plastic green houses. In regards to fruit ripeness, the levels of total aerobic bacteria in ripe black fruits were higher than those in unripe green and red mulberry. From the farms into where livestock animals were allowed to enter, Escherichia coli was detected in soil at a level of 4.26~4.94 log CFU/g and in mulberry fruits at 5.03~6.07 log CFU/g, while no coliform and E. coli were detected from where the intrusion of livestock was prevented. We also examined the density change of inoculated E. coli in mulberry fruits as they were becoming mature. While E. coli did not increase in green fruits, two and four log CFU/g increases at $20^{\circ}C$ and $37^{\circ}C$, respectively, were observed with red and fully mature black mulberries during 48 hours incubation. To ensure the food safety of mulberry, it is suggested that the introduction of E. coli into a farm through livestock should be prevented and more hygienic caution should be taken especially when the fruits are ripe.

An Investigation of the Hazards Associated with Cucumber and Hot Pepper Cultivation Areas to Establish a Good Agricultural Practices (GAP) Model (오이와 고추생산 환경에서의 GAP 모델 개발을 위한 위해요소 조사)

  • Shim, Won-Bo;Lee, Chae-Won;Jeong, Myeong-Jin;Kim, Jeong-Sook;Ryu, Jae-Gee;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • To analyze the hazards associated with cucumber and hot pepper cultivation areas, a total of 72 samples were obtained and tested to detect the presence of biological (sanitary indicative, pathogenic bacteria and fungi) and chemical hazards (heavy metals and pesticide residues). The levels of sanitary indicative bacteria (aerobic plate counts and coliforms) and fungi were ND-7.2 and ND-4.8 log CFU/(g, mL, hand, or $100cm^2$) in cucumber cultivation areas, and ND-6.8 and 0.4-5.3 log CFU/(g, mL, hand, or $100cm^2$) in hot pepper cultivation areas. More specifically, the soil of hot pepper cultivation areas was contaminated with coliforms at a maximum level of 5.6 log CFU/g. Staphylococcus aureus was detected only in glove samples at a level of 1.4 log CFU/$100cm^2$ and Bacillus cereus was detected in the majority of samples at a level of ND-4.8 log CFU/(g, mL, hand, or $100cm^2$). Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were not detected. Heavy metal (Zn, Cu, Ni, Pb, and Hg) chemical hazards were detected at levels lower than the regulation limit. Residual insecticides were not detected in cucumbers; however, hexaconazole was detected at a level of 0.016 mg/kg (maximum residue limit: 0.3 mg/kg) in hot peppers.