DOI QR코드

DOI QR Code

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse

식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과

  • 김다연 (농촌진흥청 국립농업과학원) ;
  • 이상엽 (농촌진흥청 국립농업과학원) ;
  • 김정준 (농촌진흥청 국립농업과학원) ;
  • 한지희 (농촌진흥청 국립농업과학원)
  • Received : 2016.09.27
  • Accepted : 2016.11.14
  • Published : 2016.11.30

Abstract

Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.

가뭄은 농작물의 생산성을 저해하는 주요 원인 중 하나이며, 잎을 먹는 쌈채류의 경우 물 부족 스트레스에 더 치명적일 수 있다. 본 연구는 케일 유묘에 대한 식물생육촉진 균주(PGPB)의 가뭄 내성 효과를 알아보기 위해 수행되었다. 쌈채류의 토양 및 근권 토양으로부 터 형태학적으로 구분되는 146개의 콜로니를 분리하고 온실 생물검정을 통해 케일 생육촉진이 우수한 균주 SB19를 최종 선발하였다. SB19 균주는 케일 재배 토양으로부터 분리하였으며 16S rRNA 유전자 염기서열 분석 결과 Bacillus sp.로 확인되었다. Bacillus sp. SB19 균주를 처리한 케일에 7일 간 수분 부족 스트레스를 유도하고 7일째에 가뭄 피해 조사 후 모든 처리구에 1회 관수하였다. 이후 다시 7일 간 수분 부족 스트레스를 주어 14일째에 케일의 내건성 증진 여부를 조사하였다. 가뭄 조건 7일째에 $10^6$$10^7cell\;mL^{-1}$ 농도의 SB19 균주를 처리한 케일에서 무처리와 비교하여 가뭄 스트레스 경감 효과를 보였다. 7일째에 모든 처리구에 관수 후 다시 가뭄 스트레스를 주었을 때에도 $10^6$$10^7cell\;mL^{-1}$ 농도의 SB19 균주 처리구에서 무처리구와 비교하여 가뭄 피해 경감 효과가 있었으며, 7일째와 14일째 모두에서 $10^7cell\;mL^{-1}$ 농도의 SB19 균주 처리구에서 가뭄 피해의 완화 정도가 가장 효과적인 것으로 나타났다. $10^6cell\;mL^{-1}$ SB19 균주 처리구에서는 물 부족으로 인한 잎의 노화가 $10^7cell\;mL^{-1}$ 농도 처리구에 비해 빠르게 발생하였다. 본 연구 결과를 바탕으로 유용 미생물과 식물의 상호작용이 식물의 물 이용률을 증진시키는 중요한 역할을 하고 약한 가뭄 조건에서 쌈채류의 품질을 향상시킬 수 있는 방안이 될 수 있을 것이라고 예측한다. 즉, 미생물학적인 환경 스트레스 극복 방법으로서의 가치를 뒷받침하는 것이라 할 수 있다.

Keywords

References

  1. Abeles, A. and F. Abeles. 1972. Biochemical pathway of stress-induced ethylene. Plant Physiol. 50(4): 496-498. https://doi.org/10.1104/pp.50.4.496
  2. Ahmad, F., I. Ahmad, and M. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163(2): 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  3. Armada, E., A. Probanza, A. Roldan, and R. Azcon. 2016. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. J. Plant Physiol. 192: 1-12. https://doi.org/10.1016/j.jplph.2015.11.007
  4. Caravaca, F., M. Alguacil, J. A. Hernandez, and A. Roldan. 2005. Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant Sci. 169(1): 191-197. https://doi.org/10.1016/j.plantsci.2005.03.013
  5. Chang, W.-S., M. van de Mortel, L. Nielsen, G. N. de Guzman, X. Li, and L. J. Halverson. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J. Bacteriol. 189(22): 8290-8299. https://doi.org/10.1128/JB.00727-07
  6. Cho, S. M., B. R. Kang, S. H. Han, A. J. Anderson, J.-Y. Park, Y.-H. Lee, B. H. Cho, K.-Y. Yang, C.-M. Ryu, and Y. C. Kim. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21(8): 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  7. DaMatta, F. M., A. R. Chaves, H. A. Pinheiro, C. Ducatti, and M. E. Loureiro. 2003. Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci. 164(1): 111-117. https://doi.org/10.1016/S0168-9452(02)00342-4
  8. DaMatta, F. M. and J. D. C. Ramalho. 2006. Impacts of drought and temperature stress on coffee physiology and production: a review. Braz. J. Plant Physiol. 18(1): 55-81. https://doi.org/10.1590/S1677-04202006000100006
  9. Figueiredo, M. V., H. A. Burity, C. R. Martinez, and C. P. Chanway. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. soil ecol. 40(1): 182-188. https://doi.org/10.1016/j.apsoil.2008.04.005
  10. Gan, S. 2008. Annual plant reviews, Senescence processes in plants. John Wiley & Sons, pp. 119-121
  11. Gholami, A., S. Shahsavani, and S. Nezarat. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int. J. Biol. Life Sci. 1(1): 35-40.
  12. Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190(1): 63-68. https://doi.org/10.1006/jtbi.1997.0532
  13. Hyakumachi, M., M. Nishimura, T. Arakawa, S. Asano, S. Yoshida, S. Tsushima and H. Takahashi. 2013. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes Environ. 28(1): 128-134. https://doi.org/10.1264/jsme2.ME12162
  14. Juanda, J. 2005. Screening of soil bacteria for plant growth promoting activities in vitro. J. Agric. Sci. 4: 27-31.
  15. Kasim, W. A., M. E. Osman, M. N. Omar, I. A. A. El-Daim, S. Bejai, and J. Meijer. 2013. Control of drought stress in wheat using plant-growth-promoting bacteria. J. Plant Growth Regul. 32(1): 122-130. https://doi.org/10.1007/s00344-012-9283-7
  16. Kim, B.-Y., J.-H. Ahn, H.-Y. Weon, J. Song, S.-I. Kim, and W.-G. Kim. 2012. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16(4): 357-363. https://doi.org/10.7585/kjps.2012.16.4.357
  17. Kiyosue, T., K. Yamaguchi-Shinozaki, and K. Shinozaki. 1994. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106(4): 1707. https://doi.org/10.1104/pp.106.4.1707
  18. Kloepper, J. W., C.-M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathol. 94(11): 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  19. Kumar, A., A. Prakash and B. Johri. 2011. Bacillus as PGPR in crop ecosystem. Bacteria in agrobiology: crop ecosystems, Springer. pp. 37-59.
  20. Kwon, J.-S., H.-Y. Weon, J.-S. Suh, W.-G. Kim, K.-Y. Jang, and H.-J. Noh. 2007. Plant growth promoting effect and antifungal activity of Bacillus subtilis S37-2. Korean J. Soil Sci. Fertil. 40(6): 447-453.
  21. Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166(2): 525-530. https://doi.org/10.1016/j.plantsci.2003.10.025
  22. Mittler, R. and B. A. Zilinskas. 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 5(3): 397-405. https://doi.org/10.1111/j.1365-313X.1994.00397.x
  23. Munne-Bosch, S. and L. Alegre. 2004. Die and let live: leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 31(3): 203-216. https://doi.org/10.1071/FP03236
  24. Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32(2): 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
  25. Nautiyal, C. S., S. Srivastava, P. S. Chauhan, K. Seem, A. Mishra and S. K. Sopory. 2013. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 66: 1-9. https://doi.org/10.1016/j.plaphy.2013.01.020
  26. Prasad, V., V. Sandhya, and S. Z. Ali. 2016. Plant-rhizobacteria interactions mitigates drought stress.: Sayyed, R. Z., M. S. Reddy and A. I. Al-Turki. (eds). Recent Trends in PGPR Research for Sustainable Crop Productivity, Asian PGPR. p. 97.
  27. Prudent, M., C. Salon, A. Souleimanov, R. N. Emery, and D. L. Smith. 2015. Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis. Agron. Sustain. Dev. 35(2): 749-757. https://doi.org/10.1007/s13593-014-0256-z
  28. Sandhya, V., M. Grover, G. Reddy, and B. Venkateswarlu. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertil. Soils 46(1): 17-26. https://doi.org/10.1007/s00374-009-0401-z
  29. Sayyed, R. and S. Chincholkar. 2009. Siderophore-producing Alcaligenes feacalis exhibited more biocontrol potential Vis-a-Vis chemical fungicide. Curr. Microbiol. 58(1): 47-51. https://doi.org/10.1007/s00284-008-9264-z
  30. Sayyed, R., B. Naphade, and S. Chincholklar. 2007. Siderophore producing A. feacalis promoted the growth of Safed musali and Ashwagandha. J. Med. Aromat. Plants 29: 1-5.
  31. Selvakumar, G., P. Panneerselvam, and A. N. Ganeshamurthy. 2012. Bacterial mediated alleviation of abiotic stress in crops. Bacteria in Agrobiology: Stress Management, Springer. pp. 205-224.
  32. Seo, M.-S. and H.-G. Song. 2013. Growth promotion of tomato plant under drought conditions by treatment of rhizobacteria producing ACC deaminase and phytohormones. Korean J. Microbiol. 49(1): 46-50. https://doi.org/10.7845/kjm.2013.004
  33. Sgherri, C. L. M., M. Maffei, and F. Navari-Izzo. 2000. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J. Plant Physiol. 157(3): 273-279. https://doi.org/10.1016/S0176-1617(00)80048-6
  34. Smirnova, I., A. Sadanov, and R. S. Galimbaeva. 2016. Biological method for improving germinating and productivity of melilot.: Sayyed, R. Z., M. S. Reddy and A. I. Al-Turki. (eds). Recent Trends in PGPR Research for Sustainable Crop Productivity, Asian PGPR. p. 21.
  35. Timmusk, S. and E. G. H. Wagner. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12(11): 951-959. https://doi.org/10.1094/MPMI.1999.12.11.951
  36. Toledo, M. M., J. Gonzalez-Lopez, T. De la Rubia, J. Moreno, and A. Ramos-Cormenzana. 1988. Effect of inoculation with Azotobacter chroococcum on nitrogenase activity of Zea mays roots grown in agricultural soils under aseptic and non-sterile conditions. Biol. Fertil. Soils 6(2): 170-173. https://doi.org/10.1007/BF00257669
  37. Vurukonda, S. S. K. P., S. Vardharajula, M. Shrivastava, and A. SkZ. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. https://doi.org/10.1016/j.micres.2015.12.003
  38. Wayne, L., D. Brenner, R. Colwell, P. Grimont, O. Kandler, M. Krichevsky, L. Moore, W. Moore, R. Murray, and E. Stackebrandt. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37(4): 463-464. https://doi.org/10.1099/00207713-37-4-463
  39. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2): 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  40. Yang, J., J. W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14(1): 1-4. https://doi.org/10.1016/j.tplants.2008.10.004