• Title/Summary/Keyword: Soil bacteria

Search Result 1,333, Processing Time 0.024 seconds

A report of 24 unrecorded bacterial species in Korea belonging to the Phyla Proteobacteria and Bacteroidetes isolated in 2020

  • Kim, Ju-Young;Yoon, Jung-Hoon;Joh, Kiseong;Seong, Chi-Nam;Kim, Won-Yong;Im, Wan-Taek;Cha, Chang-Jun;Kim, Seung-Bum;Jeon, Che-Ok;Seo, Taegun;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • In 2020, 24 bacterial strains were isolated from algae, kudzu leaf, mud, pine cone, seashore sand, sea water, soil, tidal flat, and wetland from the Republic of Korea. Isolated bacterial strains were identified based on 16S rRNA gene sequences, and those exhibiting at least 98.7% sequence similarity with known bacterial species, but not reported in Korea, were highlighted as unrecorded species. These isolates were allocated to the phyla Bacteroidetes and Proteobacteria as unrecorded species in Korea. The four Bacteroidetes strains were classified into the families Chitinophagaceae, Flavobacteriaceae, and Sphingobacteriaceae (of the orders Chitinophagales, Flavobacteriales, and Sphingobacteriales, respectively). The 20 Proteobacteria strains belonged to the Aeromonadaceae, Marinobacter, Microbulbiferaceae, Enterobacteriaceae, Erwiniaceae, Morganellaceae, Yersiniaceae, Lysobacteraceae, Halomonadaceae, Moraxellaceae, Pseudomonadaceae, Steroidobacteraceae, Xanthomonadaceae, and Myxococcaceae (of the orders Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacterales, Lysobacterales, Oceanospirillales, Pseudomonadales, Steroidobacter, Xanthomonadales, and Myxococcales). This study focused on the description of 24 unreported bacterial species in Korea in the phyla Bacteroidetes and Proteobacteria belonging to six classes.

Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean (Glycine max (L.) Merrill)

  • Chanwit Suriyachadkun;Orawan Chunhachart;Moltira Srithaworn;Rungnapa Tangchitcharoenkhul;Janpen Tangjitjareonkun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1435-1446
    • /
    • 2022
  • Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 ㎍/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 ㎍/ml and the strain EX51 produced the highest amount of ammonia 361.04 ㎍/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 ㎍/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.

A NEW BIOPOLYMER FOR REFRESHMENT

  • Bozou, J.C.;Gautry, L.;Pianelli, G.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.480-490
    • /
    • 2003
  • An innovative biopolymer known as the Rhizobian gum has been developed in France, which shows some dramatic refreshing effect on the skin. The origin of this innovative project takes its source in the natural environment, and in particular the natural environment of the roots of sunflowers and wheat, where a symbiotic bacterium has been discovered. It is a Rhizobium bacterium, which is hosted by the roots, and which is able to synthesize a specific polymer showing a dramatic water binding capacity. This polymer is in particular synthesized in period of drought, and its biological role is to concentrate the small amount water present in the soil in order to take it available for the root, which becomes then able to absorb it. This vital mechanism allows the plant to survive despite a severe climatic environment. This basic research has been conducted in collaboration whit the French National centre of scientific Research (CNRS), and has lead to the isolation of the Rhizobium bacteria. Rhizobian gum is a branched biopolymer consisting in the repetition of a polysaccharide unit of 3 molecules of glucose, 3 molecules of galactose and 1 molecule of glucuronic acid, whit one pyruvate group an average 1.6 acetyl groups. The fresh effect of Rhizobian gum is a strong sensorial impact that 100 % of the consumers are able to perceive, and which is judged very pleasant by most of them. In addition to this, a large majority of consumers are perceived, and which is judge very pleasant by most of them. In addition to this, a large majority of consumers also feel a very pleasant relaxing sensation. Smoothness and softness are also felt by most consumers and qualified positively by most of them. These qualities guarantee a strong impact on today's consumers.

  • PDF

A NEW BIOPOLYMER FOR REFRESHMENT

  • Bozou, J.C.;Gautry, L.;Pianelli, G.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.50-60
    • /
    • 2003
  • An innovative biopolymer known as the Rhizobian gum has been developed in France, which shows some dramatic refreshing effect on the skin. The origin of this innovative project takes its source in the natural environment, and in particular the natural environment of the roots of sunflowers and wheat, where a symbiotic bacterium has been discovered. It is a Rhizobium bacterium, which is hosted by the roots, and which is able to synthesize a specific polymer showing a dramatic water binding capacity. This polymer is in particular synthesized in period of drought, and its biological role is to concentrate the small amount water present in the soil in order to take it available for the root, which becomes then able to absorb it. This vital mechanism allows the plant to survive despite a severe climatic environment. This basic research has been conducted in collaboration whit the French National centre of scientific Research (CNRS), and has lead to the isolation of the Rhizobium bacteria. Rhizobian gum is a branched biopolymer consisting in the repetition of a polysaccharide unit of 3 molecules of glucose, 3 molecules of galactose and 1 molecule of glucuronic acid, whit one pyruvate group an average 1.6 acetyl groups. The fresh effect of Rhizobian gum is a strong sensorial impact that 100 % of the consumers are able to perceive, and which is judged very pleasant by most of them. In addition to this, a large majority of consumers are perceived, and which is judge very pleasant by most of them. In addition to this, a large majority of consumers also feel a very pleasant relaxing sensation. Smoothness and softness are also felt by most consumers and qualified positively by most of them. These qualities guarantee a strong impact on today's consumers.

  • PDF

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Feasibility of Natural Attenuation for TCE Anaerobic Reductive Dechlorination Using Microsized Corn-Oil Droplet as an Activator (Microsized Corn-Oil Droplet (MOD)의 Trichloroethylene (TCE) 생물학적 탈염소화 분해 자연저감 완효성 촉진제 적용성 평가)

  • Kyungjin Han;Huiyun Kim;Sooyoul Kwon;Young Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • Recently, enhanced in situ bioremediation using slow substrate release techniques has been actively researched for managing TCE-contaminated groundwater. This study conducted a lab-scale batch reactor experiment to evaluate the feasibility of natural attenuation for TCE dechlorination using microsized corn-oil droplet (MOD) as an activator considering the following three factors: 1) TCE dechlorination in the presence or absence of MOD; 2) TCE dechlorination in the presence or absence of inactivator of native microbial activity; and 3) MOD concentration effects on TCE dechlorination. Batch reactors were constructed using site groundwater and soil in which Dehalococcoides bacteria were present. Without MOD, TCE was decomposed into dichloroethylene (DCE). However, other by-products of TCE dechlorination were not detected. With MOD, DCE, vinyl chloride (VC), and ethylene (ETH) were sequentially observed. This result confirmed that MOD effectively supplied electrons to complete dechlorination of TCE to ETH. However, when an excess of MOD was provided, it formed unfavorable conditions for anaerobic digestion because dechlorination reaction did not proceed while propionic acid was accumulated after DCE was generated. Therefore, if an appropriate amount of MOD is supplied, MOD can be effectively used as a natural reduction activator to promote biodegradation in an aquifer contaminated by TCE.

Isolation of Cesium and Radiation Resistance Bacteria for Bioremediation (생물정화를 위한 세슘 및 방사선 저항성 세균의 분리)

  • Jae Hoon Kim;Jai Hyunk Ryu;Sang Hoon Kim;Joon Woo Ahn;Soon Jae Kwon;Jin Baek Kim;Min Kyu Kim;Sang Young Im;Jae Nam Park
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2023
  • The global problem of handling radioactive materials is facing limitations. Eco-friendly bioremediation methods using microorganisms are being studied. This study was conducted to screen cesium-resistant microbial strains. M1 strain was selected from the soil sample by enriched culture in R2A medium containing 100 mM CsCl. In liquid medium containing above 40 mM of CsCl, the growth of M1 was inhibited in a concentration-dependent manner. Otherwise, M1 can survive up to 80mM CsCl in solid medium although the growth rate was slow and colony size was small. M1 strain was genetically identified as a strain of the genus Acinetobacter through 16S rRNA sequencing, and radiation resistance (D10 value) of M1 was found to be 0.307 kGy. These results showed that M1 strain is highly resistant to cesium and can grow in radiation environment. It was considered that M1 strain is useful in the field of biological decontamination of cesium.

Effect on Fruit Quality and Tree's Main Disease Control by Agro-chemical alternatives (대체농업자재에 의한 과수의 품질 및 주요병해방제 효과)

  • Nam, Ki-Woong;Kim, Seung-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.3
    • /
    • pp.67-77
    • /
    • 2002
  • This study was conducted to investigate an effects on ago-chemical alternative materials such as the wood vinegar, a lactic acid bacteria serum, the fermented plant juice, the brown rice vinegar and a Chitosan used for amount and qualities of fruits and to examine the pest protection efficiency for their uses in the apple and pear orchard farms. An apple yields in the orchard cultivated with using the ago-chemical alternative materials without appling the fertilizer and pesticides were decreased at 56% relative to the conventional farming practice method. Also, it was indicated that there was difficult to produce the fruits with marketability because the small sizes of fruits were produced. For the quality of fruits, the brix of apple produced in the orchard cultivated with using the ago-chemical alternative materials was similar, but Vitamin C content was greater than that of the conventional farming practice method. As a results of treating with the wood vinegar, a lactic acid bacteria serum, the fermented plant juice, the brown rice vinegar and a Chitosan instead of applying pesticides, the fruit disease in the Chitosan treatment was a little decreased, but was great occurred in the other treatments compared with the conventional farming practice mehod. However, it observed that brix and Vitamin C content of apple produced in the Chitosan, brown rice vinegar, fermented plan juice and fish amino acid treatments and in the Chitosan, brown rice vinegar, charcoal power and peat moss treatments were greater than those of the conventional farming practice method, respectively. Over all, it considered that there was very difficult to manage the orchard depended on the ago-chemical alternative materials without appling the chemical fertilizer and pesticides in the apple orchard, but it might be proper to use the ago-chemical alternative materials as an auxiliary means to decrease the appling amount of chemical fertilizer and pesticides. Furthermore, the general effects on the ago-chemical alternative materials to the perennial fruits should be investigated with considering the changes of soil fertility, soil microbial status and natural enemy creatures after treating them for a long time.

  • PDF