DOI QR코드

DOI QR Code

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed (Department of Biology, College of Science and Arts, Northern Border University) ;
  • Fahdah A. Alshammari (Department of Biology, College of Science and Arts, Northern Border University) ;
  • Mohammed H. Sharaf (Department of Botany and Microbiology, Faculty of Science, Al-Azhar University)
  • Received : 2022.11.14
  • Accepted : 2022.12.16
  • Published : 2023.01.28

Abstract

The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Keywords

Acknowledgement

The authors gratefully acknowledge the approval and support of this research study by the grant No. SCAR-2022-11-1673 from the Deanship of Scientific Research at Northern Border University, Arar, K.S.A.

References

  1. Vivas R, Barbosa AAT, Dolabela SS, Jain S. 2019. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb. Drug Resist. 25: 890-908.  https://doi.org/10.1089/mdr.2018.0319
  2. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. 2009. Bad bugs, no drugs: no ESKAPE! an update from the infectious diseases society of America mechanisms of antimicrobial resistance in ESKAPE pathogens. Clin. Infect. Dis. 48: 1-12.  https://doi.org/10.1086/595011
  3. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18: 318-327.  https://doi.org/10.1016/S1473-3099(17)30753-3
  4. Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355: 826-830.  https://doi.org/10.1126/science.aaj2191
  5. Santajit S, Indrawattana N. 2016. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res. Int. 2016: 2475067. 
  6. Danquah CA, Minkah PAB, Junior IOD, Amankwah KB, Somuah SO. 2022. Antimicrobial compounds from microorganisms. Antibiotics 11: 285. 
  7. Demain AL, Sanchez S. 2009. Microbial drug discovery: 80 years of progress. J. Antibiot. (Tokyo) 62: 5-16.  https://doi.org/10.1038/ja.2008.16
  8. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al. 2019. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med. 19: 114. 
  9. Blazheva D, Mihaylova D, Averina O, Slavchev A, Brazkova M, Poluektova E, et al. 2022. Antioxidant potential of probiotics and postbiotics: a biotechnological approach to improving their stability. Russ. J. Genet. 58: 1036-1050.  https://doi.org/10.1134/S1022795422090058
  10. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. 2018. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Polish J. Microbiol. 67: 259-272.  https://doi.org/10.21307/pjm-2018-048
  11. Fernandes CJ, Doddavarapu B, Harry A, Dilip SPS, Ravi L. 2021. Isolation and identification of pigment producing actinomycete Saccharomonospora azurea SJCJABS01. Biomed. Pharmacol. J. 14: 2261-2269.  https://doi.org/10.13005/bpj/2326
  12. de Castro I, Mendo S, Caetano T. 2020. Antibiotics from haloarchaea: what can we learn from comparative genomics? Mar. Biotechnol. 22: 308-316.  https://doi.org/10.1007/s10126-020-09952-9
  13. Barka EA, Vatsa P, Sanchez L, Nathalie Gaveau-Vaillant CJ, Klenk H-P, Clement C, et al. 2016. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43.  https://doi.org/10.1128/MMBR.00019-15
  14. Del Carratore F, Hanko EK, Breitling R, Takano E. 2022. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr. Opin. Biotechnol. 77: 102762. 
  15. Kemung HM, Tan LTH, Chan KG, Ser HL, Law JWF, Lee LH, et al. 2020. Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia with anti-MRSA, anti-biofilm and antioxidant activities. Molecules 25: 3545. 
  16. Pusparajah P, Letchumanan V, Law JWF, Mutalib NSA, Ong YS, Goh BH, et al. 2021. Streptomyces sp.-a treasure trove of weapons to combat methicillin-resistant Staphylococcus aureus biofilm associated with biomedical devices. Int. J. Mol. Sci. 22: 9360. 
  17. Paudel B, Maharjan R, Rajbhandari P, Aryal N, Aziz S, Bhattarai K, et al. 2021. Maculosin, a non-toxic antioxidant compound isolated from Streptomyces sp. KTM18. Pharm. Biol. 59: 933-936.  https://doi.org/10.1080/13880209.2021.1946091
  18. Subramanian D, Kim MS, Kim DH, Heo MS. 2017. Isolation, characterization, antioxidant, antimicrobial and cytotoxic effect of marine actinomycete, Streptomyces carpaticus MK-01, against fish pathogens. Braz. Arch. Biol. Technol. 60: e17160539. 
  19. Brana AF, Sarmiento-Vizcaino A, Osset M, Perez-Victoria I, Martin J, De Pedro N, et al. 2017. Lobophorin K, a new natural product with cytotoxic activity produced by Streptomyces sp. M-207 associated with the deep-sea coral Lophelia pertusa. Mar. Drugs 15: 144. 
  20. Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH. 2016. Streptomyces malaysiense sp. nov.: a novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci. Rep. 6: 24247. 
  21. Barry J, Brown A, Ensor V, Lakhani U, Petts D, Warren C, et al. 2003. Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals. J. Antimicrob. Chemother. 51: 1191-1202.  https://doi.org/10.1093/jac/dkg234
  22. Perez-Vazquez M, Oliver A, Sanchez del Saz B, Loza E, Baquero F, Canton R. 2001. Performance of the VITEK2 system for identification and susceptibility testing of routine Enterobacteriaceae clinical isolates. Int. J. Antimicrob. Agents 17: 371-376.  https://doi.org/10.1016/S0924-8579(01)00318-1
  23. Sineva O, Terekhova L. 2015. Selective isolation of rare actinomycetes from soil. Antibiot. Chemother. 60: 27-33. 
  24. Valgas C, De Souza SM, Smania EFA, Smania A. 2007. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369-380.  https://doi.org/10.1590/S1517-83822007000200034
  25. NCCLS. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-Sixth Edition. Document M7-A6. Wayne, (p. 60). 
  26. Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340.  https://doi.org/10.1099/00207713-16-3-313
  27. Tresner HD, Davies MC, Backus EJ. 1961. Electron microscopy of Streptomyces spore morphology and its role in species differentiation. J. Bacteriol. 81: 70-80.  https://doi.org/10.1128/jb.81.1.70-80.1961
  28. Williams ST, Goodfellow M, Alderson G. 1989. Genus Streptomyces Waksman and Henrici 1943, pp. 2452-2492. In Williams ST, Sharpe ME, Holt JP (eds.), Bergey's Manual of Systematic Bacteriology Vol. 4, 1st Ed. Williams & Wilkins, Baltimore, USA. 
  29. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. 1964. Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol. 12: 421-423.  https://doi.org/10.1128/am.12.5.421-423.1964
  30. Lechevalier MP, Lechevalier H. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435-443.  https://doi.org/10.1099/00207713-20-4-435
  31. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743-1813.  https://doi.org/10.1099/00221287-129-6-1743
  32. Miller DN, Bryant JE, Madsen EL, Ghiorse WC. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65: 4715-4724.  https://doi.org/10.1128/AEM.65.11.4715-4724.1999
  33. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York. 
  34. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA74: 5463-5467. 
  35. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027.  https://doi.org/10.1093/molbev/msab120
  36. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8: e72520. 
  37. Castilho AL, Caleffi-Ferracioli KR, Canezin PH, Dias Siqueira VL, de Lima Scodro RB, Cardoso RF. 2015. Detection of drug susceptibility in rapidly growing mycobacteria by resazurin broth microdilution assay. J. Microbiol. Methods 111: 119-121.  https://doi.org/10.1016/j.mimet.2015.02.007
  38. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfaces B Biointerfaces 79: 340-344.  https://doi.org/10.1016/j.colsurfb.2010.04.014
  39. Singh VK, Mishra A, Jha B. 2017. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 7: 337. 
  40. Attimarad SL, Ediga GN, Karigar AA, Karadi R, Chandrashekhar N, Shivanna C. 2012. Screening, isolation and purification of antibacterial agents from marine actinomycetes. Int. Curr. Pharm. J. 1: 394-402.  https://doi.org/10.3329/icpj.v1i12.12448
  41. Siddhuraju P, Manian S. 2007. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 105: 950-958.  https://doi.org/10.1016/j.foodchem.2007.04.040
  42. van de Loosdrecht AA, Beelen RHJ, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MMAC. 1994. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174: 311-320.  https://doi.org/10.1016/0022-1759(94)90034-5
  43. Zothanpuia, Passari AK, Chandra P, Leo V V., Mishra VK, Kumar B, et al. 2017. Production of potent antimicrobial compounds from Streptomyces cyaneofuscatus associated with fresh water sediment. Front. Microbiol. 8: 68. 
  44. Halim MMA, Eyada IK, Tongun RM. 2018. Prevalence of multidrug drug resistant organisms and hand hygiene compliance in surgical NICU in Cairo University Specialized Pediatric Hospital. Egypt. Pediatr. Assoc. Gaz. 66: 103-111.  https://doi.org/10.1016/j.epag.2018.09.003
  45. Khalifa HO, Soliman AM, Ahmed AM, Shimamoto T, Nariya H, Matsumoto T, et al. 2019. High prevalence of antimicrobial resistance in Gram-negative bacteria isolated from clinical settings in Egypt: recalling for judicious use of conventional antimicrobials in developing nations. Microb. Drug Resist. 25: 371-385.  https://doi.org/10.1089/mdr.2018.0380
  46. Debnath J, Das PK. 2015. Bacteriological profile and antibiotic susceptibility pattern of neonatal septicemia in a tertiary care hospital of Tripura. Indian J. Microbiol. Res. 2: 238. 
  47. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281.  https://doi.org/10.1111/j.1469-0691.2011.03570.x
  48. Decarli A, Nascimento LV, Hiromi Sayama Esteves L, Arenas Rocha P, Yuki VMG, Cieslinski J, et al. 2022. The impact of VITEK 2 implementation for identification and susceptibility testing of microbial isolates in a Brazilian public hospital. J. Med. Microbiol. 71: 1543. 
  49. Rice LB. 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 197: 1079-1081.  https://doi.org/10.1086/533452
  50. Tan HK, Foo HL, Loh TC, Alitheen NBM, Rahim RA. 2015. Cytotoxic effect of proteinaceous postbiotic metabolites produced by Lactobacillus plantarum I-UL4 cultivated in different media composition on MCF-7 breast cancer cell. Malays. J. Microbiol. 11: 207-214. 
  51. Berdy J. 2005. Bioactive microbial metabolites: a personal view. J. Antibiot. (Tokyo) 58: 1-26.  https://doi.org/10.1038/ja.2005.1
  52. Tanaka Y, Omura S. 1990. Metabolism and products of actinomycetes. An introduction. Actinomycetologica 4: 13-14.  https://doi.org/10.3209/saj.4_13
  53. Al-Ansari M, Alkubaisi N, Vijayaragavan P, Murugan K. 2019. Antimicrobial potential of Streptomyces sp. to the Gram positive and Gram negative pathogens. J. Infect. Public Health 12: 861-866.  https://doi.org/10.1016/j.jiph.2019.05.016
  54. Singh LS, Sharma H, Talukdar NC. 2014. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol. 14: 278. 
  55. Abdel-Haliem MEF, Ali MF, Ghaly MF, Sakr AA. 2013. Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains isolated from paintings of ancient Egyptian tombs. J. Cult. Herit. 14: 45-50.  https://doi.org/10.1016/j.culher.2012.03.009
  56. Wilson ZE, Brimble MA. 2009. Molecules derived from the extremes of life. Nat. Prod. Rep. 26: 44-71.  https://doi.org/10.1039/B800164M
  57. Terra L, Dyson PJ, Hitchings MD, Thomas L, Abdelhameed A, Banat IM, et al. 2018. A novel alkaliphilic Streptomyces inhibits ESKAPE pathogens. Front. Microbiol. 9: 2458. 
  58. Holt J, Krieg N, Sneath P, Staley J, Williams S. 1994. Bergey's Manual of Determinative Bacteriology, pp.1710-1728. 9th Ed. Williams & Wilkins, Baltimore, USA. 
  59. Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, et al. 2012. Bergey's Manual of Systematic Bacteriology, Volume 5: The Actinobacteria, part A, pp. 1446-1804. 2nd Ed. Springer, New York, USA. 
  60. Lim SS, Selvaraj A, Ng ZY, Palanisamy M, Mickymaray S, Cheong PCH, et al. 2018. Isolation of actinomycetes with antibacterial activity against multi-drug resistant bacteria. Malays. J. Microbiol. 14: 293-305. 
  61. Sharma M, Manhas RK. 2019. Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. BMC Microbiol. 19: 44. 
  62. Singhania M, Ravichander P, Swaroop S, Naine Selvakumar J, Vaithilingam M, Devi Chandrasekaran S. 2017. Anti-bacterial and anti-oxidant property of Streptomyces laurentii VITMPS isolated from marine soil. Curr. Bioact. Compd. 13: 78-81.  https://doi.org/10.2174/1573407212666160606130704
  63. Khieu TN, Liu MJ, Nimaichand S, Quach NT, Chu-Ky S, Phi QT, et al. 2015. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front. Microbiol. 6: 574. 
  64. Enright MC. 2003. The evolution of a resistant pathogen - The case of MRSA. Curr. Opin. Pharmacol. 3: 474-479.  https://doi.org/10.1016/S1471-4892(03)00109-7
  65. Marinho PR, Simas NK, Kuster RM, Duarte RS, Fracalanzza SEL, Ferreira DF, et al. 2012. Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. J. Antimicrob. Chemother. 67: 2396-2400.  https://doi.org/10.1093/jac/dks229
  66. Patel R. 2005. Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 437: 41-47.  https://doi.org/10.1097/01.blo.0000175714.68624.74
  67. Park SR, Tripathi A, Wu J, Schultz PJ, Yim I, McQuade TJ, et al. 2016. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat. Commun. 77: 10710. 
  68. Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, et al. 2017. Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front. Microbiol. 88: 236. 
  69. You JL, Xue XL, Cao LX, Lu X, Wang J, Zhang LX, et al. 2007. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl. Microbiol. Biotechnol. 76: 1137-1144.  https://doi.org/10.1007/s00253-007-1074-x
  70. Apak R, Ozyurek M, Guclu K, Capano?lu E. 2016. Antioxidant activity/capacity measurement. 2. hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. J. Agric. Food Chem. 64: 1028-1045.  https://doi.org/10.1021/acs.jafc.5b04743
  71. Jemimah Naine S, Subathra Devi C, Mohanasrinivasan V, Vaishnavi B. 2015. Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract. Brazilian Arch. Biol. Technol. 58: 198-207.  https://doi.org/10.1590/S1516-8913201400173
  72. Polapally R, Mansani M, Rajkumar K, Burgula S, Hameeda B, Alhazmi A, et al. 2022. Melanin pigment of Streptomyces puniceus RHPR9 exhibits antibacterial, antioxidant and anticancer activities. PLoS One 17: e0266676. 
  73. Tan LTH, Chan KG, Chan CK, Khan TM, Lee LH, Goh BH. 2018. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. Biomed Res. Int. 2018: 4823126. 
  74. Osama N, Bakeer W, Raslan M, Soliman HA, Abdelmohsen UR, Sebak M. 2022. Anti-cancer and antimicrobial potential of five soil Streptomycetes: a metabolomics-based study. R. Soc. Open Sci. 9: 211509. 
  75. Ortiz-Lopez FJ, Alcalde E, Sarmiento-Vizcaino A, Diaz C, Cautain B, Garcia LA, et al. 2018. New 3-hydroxyquinaldic acid derivatives from cultures of the marine derived actinomycete Streptomyces cyaneofuscatus M-157. Mar. Drugs 16: 371. 
  76. Huang H, Yang T, Ren X, Liu J, Song Y, Sun A, et al. 2012. Cytotoxic angucycline class glycosides from the deep sea actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 75: 202-208.  https://doi.org/10.1021/np2008335
  77. Lukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanislawek A. 2021. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-An updated review. Cancers 13: 4287. 
  78. Ser HL, Mutalib NSA, Yin WF, Chan KG, Goh BH, Lee LH. 2015. Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia. Front. Microbiol. 6: 1398. 
  79. Fernandez A. 2014. Synergizing immunotherapy with molecular-targeted anticancer treatment. Drug Discov. Today 19: 1427-1432.  https://doi.org/10.1016/j.drudis.2014.03.022
  80. Mohamed H, Hassane A, Rawway M, El-Sayed M, Gomaa AER, Abdul-Raouf U, et al. 2021. Antibacterial and cytotoxic potency of thermophilic Streptomyces werraensis MI-S.24-3 isolated from an Egyptian extreme environment. Arch. Microbiol. 203: 4961-4972.  https://doi.org/10.1007/s00203-021-02487-0
  81. Mothana AA, Al-Shamahy HA, Mothana RA, Khaled JM, Al-Rehaily AJ, Al-Mahdi AY, et al. 2022. Streptomyces sp. 1S1 isolated from Southern coast of the Red Sea as a renewable natural resource of several bioactive compounds. Saudi Pharm. J. 30: 162-171.  https://doi.org/10.1016/j.jsps.2021.12.012
  82. Chen J, Hu L, Chen N, Jia R, Ma Q, Wang Y. 2021. The biocontrol and plant growth-promoting properties of Streptomyces alfalfae XN-04 revealed by functional and genomic analysis. Front. Microbiol. 12: 745766. 
  83. El-Naggar NEA, El-Bindary AAA, Abdel-Mogib M, Nour NS. 2017. In vitro activity, extraction, separation and structure elucidation of antibiotic produced by Streptomyces anulatus NEAE-94 active against multidrug-resistant Staphylococcus aureus. Biotechnol. Biotechnol. Equip. 31: 418-430.  https://doi.org/10.1080/13102818.2016.1276412
  84. Tamilmani E, Radhakrishnan R, Sankaran K. 2018. 13-Docosenamide release by bacteria in response to glucose during growth-fluorescein quenching and clinical application. Appl. Microbiol. Biotechnol. 102: 6673-6685.  https://doi.org/10.1007/s00253-018-9127-x
  85. Abdel-Motleb A, Ghareeb MA, Abdel-Aziz MS, El-Shazly MAM. 2022. Chemical characterization, antimicrobial, antioxidant and larvicidal activities of certain fungal extracts. J. Adv. Biotechnol. Exp. Ther. 5: 456-472.  https://doi.org/10.5455/jabet.2022.d128
  86. Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y, et al. 2014. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J. Exp. Bot. 65: 131-141.  https://doi.org/10.1093/jxb/ert356
  87. Qi D, Zou L, Zhou D, Chen Y, Gao Z, Feng R, et al. 2019. Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA34 isolated from rhizosphere soil of opuntia stricta. Front. Microbiol. 10: 1390.