Acknowledgement
The authors gratefully acknowledge the approval and support of this research study by the grant No. SCAR-2022-11-1673 from the Deanship of Scientific Research at Northern Border University, Arar, K.S.A.
References
- Vivas R, Barbosa AAT, Dolabela SS, Jain S. 2019. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb. Drug Resist. 25: 890-908. https://doi.org/10.1089/mdr.2018.0319
- Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. 2009. Bad bugs, no drugs: no ESKAPE! an update from the infectious diseases society of America mechanisms of antimicrobial resistance in ESKAPE pathogens. Clin. Infect. Dis. 48: 1-12. https://doi.org/10.1086/595011
- Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18: 318-327. https://doi.org/10.1016/S1473-3099(17)30753-3
- Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355: 826-830. https://doi.org/10.1126/science.aaj2191
- Santajit S, Indrawattana N. 2016. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res. Int. 2016: 2475067.
- Danquah CA, Minkah PAB, Junior IOD, Amankwah KB, Somuah SO. 2022. Antimicrobial compounds from microorganisms. Antibiotics 11: 285.
- Demain AL, Sanchez S. 2009. Microbial drug discovery: 80 years of progress. J. Antibiot. (Tokyo) 62: 5-16. https://doi.org/10.1038/ja.2008.16
- Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al. 2019. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med. 19: 114.
- Blazheva D, Mihaylova D, Averina O, Slavchev A, Brazkova M, Poluektova E, et al. 2022. Antioxidant potential of probiotics and postbiotics: a biotechnological approach to improving their stability. Russ. J. Genet. 58: 1036-1050. https://doi.org/10.1134/S1022795422090058
- Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. 2018. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Polish J. Microbiol. 67: 259-272. https://doi.org/10.21307/pjm-2018-048
- Fernandes CJ, Doddavarapu B, Harry A, Dilip SPS, Ravi L. 2021. Isolation and identification of pigment producing actinomycete Saccharomonospora azurea SJCJABS01. Biomed. Pharmacol. J. 14: 2261-2269. https://doi.org/10.13005/bpj/2326
- de Castro I, Mendo S, Caetano T. 2020. Antibiotics from haloarchaea: what can we learn from comparative genomics? Mar. Biotechnol. 22: 308-316. https://doi.org/10.1007/s10126-020-09952-9
- Barka EA, Vatsa P, Sanchez L, Nathalie Gaveau-Vaillant CJ, Klenk H-P, Clement C, et al. 2016. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43. https://doi.org/10.1128/MMBR.00019-15
- Del Carratore F, Hanko EK, Breitling R, Takano E. 2022. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr. Opin. Biotechnol. 77: 102762.
- Kemung HM, Tan LTH, Chan KG, Ser HL, Law JWF, Lee LH, et al. 2020. Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia with anti-MRSA, anti-biofilm and antioxidant activities. Molecules 25: 3545.
- Pusparajah P, Letchumanan V, Law JWF, Mutalib NSA, Ong YS, Goh BH, et al. 2021. Streptomyces sp.-a treasure trove of weapons to combat methicillin-resistant Staphylococcus aureus biofilm associated with biomedical devices. Int. J. Mol. Sci. 22: 9360.
- Paudel B, Maharjan R, Rajbhandari P, Aryal N, Aziz S, Bhattarai K, et al. 2021. Maculosin, a non-toxic antioxidant compound isolated from Streptomyces sp. KTM18. Pharm. Biol. 59: 933-936. https://doi.org/10.1080/13880209.2021.1946091
- Subramanian D, Kim MS, Kim DH, Heo MS. 2017. Isolation, characterization, antioxidant, antimicrobial and cytotoxic effect of marine actinomycete, Streptomyces carpaticus MK-01, against fish pathogens. Braz. Arch. Biol. Technol. 60: e17160539.
- Brana AF, Sarmiento-Vizcaino A, Osset M, Perez-Victoria I, Martin J, De Pedro N, et al. 2017. Lobophorin K, a new natural product with cytotoxic activity produced by Streptomyces sp. M-207 associated with the deep-sea coral Lophelia pertusa. Mar. Drugs 15: 144.
- Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH. 2016. Streptomyces malaysiense sp. nov.: a novel Malaysian mangrove soil actinobacterium with antioxidative activity and cytotoxic potential against human cancer cell lines. Sci. Rep. 6: 24247.
- Barry J, Brown A, Ensor V, Lakhani U, Petts D, Warren C, et al. 2003. Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals. J. Antimicrob. Chemother. 51: 1191-1202. https://doi.org/10.1093/jac/dkg234
- Perez-Vazquez M, Oliver A, Sanchez del Saz B, Loza E, Baquero F, Canton R. 2001. Performance of the VITEK2 system for identification and susceptibility testing of routine Enterobacteriaceae clinical isolates. Int. J. Antimicrob. Agents 17: 371-376. https://doi.org/10.1016/S0924-8579(01)00318-1
- Sineva O, Terekhova L. 2015. Selective isolation of rare actinomycetes from soil. Antibiot. Chemother. 60: 27-33.
- Valgas C, De Souza SM, Smania EFA, Smania A. 2007. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369-380. https://doi.org/10.1590/S1517-83822007000200034
- NCCLS. 2003. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-Sixth Edition. Document M7-A6. Wayne, (p. 60).
- Shirling EB, Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340. https://doi.org/10.1099/00207713-16-3-313
- Tresner HD, Davies MC, Backus EJ. 1961. Electron microscopy of Streptomyces spore morphology and its role in species differentiation. J. Bacteriol. 81: 70-80. https://doi.org/10.1128/jb.81.1.70-80.1961
- Williams ST, Goodfellow M, Alderson G. 1989. Genus Streptomyces Waksman and Henrici 1943, pp. 2452-2492. In Williams ST, Sharpe ME, Holt JP (eds.), Bergey's Manual of Systematic Bacteriology Vol. 4, 1st Ed. Williams & Wilkins, Baltimore, USA.
- Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. 1964. Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol. 12: 421-423. https://doi.org/10.1128/am.12.5.421-423.1964
- Lechevalier MP, Lechevalier H. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435-443. https://doi.org/10.1099/00207713-20-4-435
- Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743-1813. https://doi.org/10.1099/00221287-129-6-1743
- Miller DN, Bryant JE, Madsen EL, Ghiorse WC. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65: 4715-4724. https://doi.org/10.1128/AEM.65.11.4715-4724.1999
- Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt E, Goodfellow M (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, New York.
- Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA74: 5463-5467.
- Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027. https://doi.org/10.1093/molbev/msab120
- Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J. 2013. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8: e72520.
- Castilho AL, Caleffi-Ferracioli KR, Canezin PH, Dias Siqueira VL, de Lima Scodro RB, Cardoso RF. 2015. Detection of drug susceptibility in rapidly growing mycobacteria by resazurin broth microdilution assay. J. Microbiol. Methods 111: 119-121. https://doi.org/10.1016/j.mimet.2015.02.007
- Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surfaces B Biointerfaces 79: 340-344. https://doi.org/10.1016/j.colsurfb.2010.04.014
- Singh VK, Mishra A, Jha B. 2017. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 7: 337.
- Attimarad SL, Ediga GN, Karigar AA, Karadi R, Chandrashekhar N, Shivanna C. 2012. Screening, isolation and purification of antibacterial agents from marine actinomycetes. Int. Curr. Pharm. J. 1: 394-402. https://doi.org/10.3329/icpj.v1i12.12448
- Siddhuraju P, Manian S. 2007. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 105: 950-958. https://doi.org/10.1016/j.foodchem.2007.04.040
- van de Loosdrecht AA, Beelen RHJ, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MMAC. 1994. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174: 311-320. https://doi.org/10.1016/0022-1759(94)90034-5
- Zothanpuia, Passari AK, Chandra P, Leo V V., Mishra VK, Kumar B, et al. 2017. Production of potent antimicrobial compounds from Streptomyces cyaneofuscatus associated with fresh water sediment. Front. Microbiol. 8: 68.
- Halim MMA, Eyada IK, Tongun RM. 2018. Prevalence of multidrug drug resistant organisms and hand hygiene compliance in surgical NICU in Cairo University Specialized Pediatric Hospital. Egypt. Pediatr. Assoc. Gaz. 66: 103-111. https://doi.org/10.1016/j.epag.2018.09.003
- Khalifa HO, Soliman AM, Ahmed AM, Shimamoto T, Nariya H, Matsumoto T, et al. 2019. High prevalence of antimicrobial resistance in Gram-negative bacteria isolated from clinical settings in Egypt: recalling for judicious use of conventional antimicrobials in developing nations. Microb. Drug Resist. 25: 371-385. https://doi.org/10.1089/mdr.2018.0380
- Debnath J, Das PK. 2015. Bacteriological profile and antibiotic susceptibility pattern of neonatal septicemia in a tertiary care hospital of Tripura. Indian J. Microbiol. Res. 2: 238.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
- Decarli A, Nascimento LV, Hiromi Sayama Esteves L, Arenas Rocha P, Yuki VMG, Cieslinski J, et al. 2022. The impact of VITEK 2 implementation for identification and susceptibility testing of microbial isolates in a Brazilian public hospital. J. Med. Microbiol. 71: 1543.
- Rice LB. 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 197: 1079-1081. https://doi.org/10.1086/533452
- Tan HK, Foo HL, Loh TC, Alitheen NBM, Rahim RA. 2015. Cytotoxic effect of proteinaceous postbiotic metabolites produced by Lactobacillus plantarum I-UL4 cultivated in different media composition on MCF-7 breast cancer cell. Malays. J. Microbiol. 11: 207-214.
- Berdy J. 2005. Bioactive microbial metabolites: a personal view. J. Antibiot. (Tokyo) 58: 1-26. https://doi.org/10.1038/ja.2005.1
- Tanaka Y, Omura S. 1990. Metabolism and products of actinomycetes. An introduction. Actinomycetologica 4: 13-14. https://doi.org/10.3209/saj.4_13
- Al-Ansari M, Alkubaisi N, Vijayaragavan P, Murugan K. 2019. Antimicrobial potential of Streptomyces sp. to the Gram positive and Gram negative pathogens. J. Infect. Public Health 12: 861-866. https://doi.org/10.1016/j.jiph.2019.05.016
- Singh LS, Sharma H, Talukdar NC. 2014. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiol. 14: 278.
- Abdel-Haliem MEF, Ali MF, Ghaly MF, Sakr AA. 2013. Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains isolated from paintings of ancient Egyptian tombs. J. Cult. Herit. 14: 45-50. https://doi.org/10.1016/j.culher.2012.03.009
- Wilson ZE, Brimble MA. 2009. Molecules derived from the extremes of life. Nat. Prod. Rep. 26: 44-71. https://doi.org/10.1039/B800164M
- Terra L, Dyson PJ, Hitchings MD, Thomas L, Abdelhameed A, Banat IM, et al. 2018. A novel alkaliphilic Streptomyces inhibits ESKAPE pathogens. Front. Microbiol. 9: 2458.
- Holt J, Krieg N, Sneath P, Staley J, Williams S. 1994. Bergey's Manual of Determinative Bacteriology, pp.1710-1728. 9th Ed. Williams & Wilkins, Baltimore, USA.
- Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, et al. 2012. Bergey's Manual of Systematic Bacteriology, Volume 5: The Actinobacteria, part A, pp. 1446-1804. 2nd Ed. Springer, New York, USA.
- Lim SS, Selvaraj A, Ng ZY, Palanisamy M, Mickymaray S, Cheong PCH, et al. 2018. Isolation of actinomycetes with antibacterial activity against multi-drug resistant bacteria. Malays. J. Microbiol. 14: 293-305.
- Sharma M, Manhas RK. 2019. Purification and characterization of actinomycins from Streptomyces strain M7 active against methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. BMC Microbiol. 19: 44.
- Singhania M, Ravichander P, Swaroop S, Naine Selvakumar J, Vaithilingam M, Devi Chandrasekaran S. 2017. Anti-bacterial and anti-oxidant property of Streptomyces laurentii VITMPS isolated from marine soil. Curr. Bioact. Compd. 13: 78-81. https://doi.org/10.2174/1573407212666160606130704
- Khieu TN, Liu MJ, Nimaichand S, Quach NT, Chu-Ky S, Phi QT, et al. 2015. Characterization and evaluation of antimicrobial and cytotoxic effects of Streptomyces sp. HUST012 isolated from medicinal plant Dracaena cochinchinensis Lour. Front. Microbiol. 6: 574.
- Enright MC. 2003. The evolution of a resistant pathogen - The case of MRSA. Curr. Opin. Pharmacol. 3: 474-479. https://doi.org/10.1016/S1471-4892(03)00109-7
- Marinho PR, Simas NK, Kuster RM, Duarte RS, Fracalanzza SEL, Ferreira DF, et al. 2012. Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. J. Antimicrob. Chemother. 67: 2396-2400. https://doi.org/10.1093/jac/dks229
- Patel R. 2005. Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 437: 41-47. https://doi.org/10.1097/01.blo.0000175714.68624.74
- Park SR, Tripathi A, Wu J, Schultz PJ, Yim I, McQuade TJ, et al. 2016. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat. Commun. 77: 10710.
- Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, et al. 2017. Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front. Microbiol. 88: 236.
- You JL, Xue XL, Cao LX, Lu X, Wang J, Zhang LX, et al. 2007. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl. Microbiol. Biotechnol. 76: 1137-1144. https://doi.org/10.1007/s00253-007-1074-x
- Apak R, Ozyurek M, Guclu K, Capano?lu E. 2016. Antioxidant activity/capacity measurement. 2. hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. J. Agric. Food Chem. 64: 1028-1045. https://doi.org/10.1021/acs.jafc.5b04743
- Jemimah Naine S, Subathra Devi C, Mohanasrinivasan V, Vaishnavi B. 2015. Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract. Brazilian Arch. Biol. Technol. 58: 198-207. https://doi.org/10.1590/S1516-8913201400173
- Polapally R, Mansani M, Rajkumar K, Burgula S, Hameeda B, Alhazmi A, et al. 2022. Melanin pigment of Streptomyces puniceus RHPR9 exhibits antibacterial, antioxidant and anticancer activities. PLoS One 17: e0266676.
- Tan LTH, Chan KG, Chan CK, Khan TM, Lee LH, Goh BH. 2018. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. Biomed Res. Int. 2018: 4823126.
- Osama N, Bakeer W, Raslan M, Soliman HA, Abdelmohsen UR, Sebak M. 2022. Anti-cancer and antimicrobial potential of five soil Streptomycetes: a metabolomics-based study. R. Soc. Open Sci. 9: 211509.
- Ortiz-Lopez FJ, Alcalde E, Sarmiento-Vizcaino A, Diaz C, Cautain B, Garcia LA, et al. 2018. New 3-hydroxyquinaldic acid derivatives from cultures of the marine derived actinomycete Streptomyces cyaneofuscatus M-157. Mar. Drugs 16: 371.
- Huang H, Yang T, Ren X, Liu J, Song Y, Sun A, et al. 2012. Cytotoxic angucycline class glycosides from the deep sea actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 75: 202-208. https://doi.org/10.1021/np2008335
- Lukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanislawek A. 2021. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-An updated review. Cancers 13: 4287.
- Ser HL, Mutalib NSA, Yin WF, Chan KG, Goh BH, Lee LH. 2015. Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia. Front. Microbiol. 6: 1398.
- Fernandez A. 2014. Synergizing immunotherapy with molecular-targeted anticancer treatment. Drug Discov. Today 19: 1427-1432. https://doi.org/10.1016/j.drudis.2014.03.022
- Mohamed H, Hassane A, Rawway M, El-Sayed M, Gomaa AER, Abdul-Raouf U, et al. 2021. Antibacterial and cytotoxic potency of thermophilic Streptomyces werraensis MI-S.24-3 isolated from an Egyptian extreme environment. Arch. Microbiol. 203: 4961-4972. https://doi.org/10.1007/s00203-021-02487-0
- Mothana AA, Al-Shamahy HA, Mothana RA, Khaled JM, Al-Rehaily AJ, Al-Mahdi AY, et al. 2022. Streptomyces sp. 1S1 isolated from Southern coast of the Red Sea as a renewable natural resource of several bioactive compounds. Saudi Pharm. J. 30: 162-171. https://doi.org/10.1016/j.jsps.2021.12.012
- Chen J, Hu L, Chen N, Jia R, Ma Q, Wang Y. 2021. The biocontrol and plant growth-promoting properties of Streptomyces alfalfae XN-04 revealed by functional and genomic analysis. Front. Microbiol. 12: 745766.
- El-Naggar NEA, El-Bindary AAA, Abdel-Mogib M, Nour NS. 2017. In vitro activity, extraction, separation and structure elucidation of antibiotic produced by Streptomyces anulatus NEAE-94 active against multidrug-resistant Staphylococcus aureus. Biotechnol. Biotechnol. Equip. 31: 418-430. https://doi.org/10.1080/13102818.2016.1276412
- Tamilmani E, Radhakrishnan R, Sankaran K. 2018. 13-Docosenamide release by bacteria in response to glucose during growth-fluorescein quenching and clinical application. Appl. Microbiol. Biotechnol. 102: 6673-6685. https://doi.org/10.1007/s00253-018-9127-x
- Abdel-Motleb A, Ghareeb MA, Abdel-Aziz MS, El-Shazly MAM. 2022. Chemical characterization, antimicrobial, antioxidant and larvicidal activities of certain fungal extracts. J. Adv. Biotechnol. Exp. Ther. 5: 456-472. https://doi.org/10.5455/jabet.2022.d128
- Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y, et al. 2014. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J. Exp. Bot. 65: 131-141. https://doi.org/10.1093/jxb/ert356
- Qi D, Zou L, Zhou D, Chen Y, Gao Z, Feng R, et al. 2019. Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA34 isolated from rhizosphere soil of opuntia stricta. Front. Microbiol. 10: 1390.