• Title/Summary/Keyword: Soil Waste

Search Result 1,174, Processing Time 0.027 seconds

A Study on Contaminant Sorption Capacity of Soil Liner for Seashore Waste Landfill by Using Column Test Apparatus (주상시험장치를 이용한 해안 폐기물 매립장 지반토지 오염물 흡착능에 관한 연구)

  • Jang, Yeon-Su;Han, Seong-Gil;Kim, Su-Sam
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1997
  • In this paper, the retardation capacity of marine clay and weathered soil of seashore waste landfill is analyzed by using a laboratory column apparatus for organic and inorganic components which can represent the components of the leachate of municipal waste landfill. The results show that sorption capacity marine clay for potassium is larger than that of weathered soil. Lead and cadmium are adsorbed completely at concentrations higher than the real concentrations developed in the landfill. The bottom soils of seashore landfill can also retard some nondegradable components of organics although their sorption capacities for organics were less than those for inorganics.

  • PDF

Strength Development of Dry-Mixed Earthen Concrete Incorporating Red Mud and Recycled Asphalt Concrete Aggregates (폐아스콘 순환골재를 활용한 레드머드 혼입 건식 흙콘크리트의 강도 발현 특성)

  • Kang, Suk-Pyo;Park, Kyu-Eun;Kim, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.403-411
    • /
    • 2024
  • This study investigated the use of recycled aggregate from waste asphalt concrete in dry soil concrete mixed with red mud. The results showed that dry soil concrete utilizing waste asphalt recycled aggregate had relatively lower compressive strength compared to that using crushed aggregate. However, dry soil concrete mixed with red mud using waste asphalt recycled aggregate achieved a compressive strength of over 18.0MPa, meeting the highest performance standard for parking lot use, when the cement content was more than 250kg/m3.

Study of Permeability of Bentonite Mixtured Soil (벤토나이트 혼합토의 투수성에 관한 연구)

  • Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.805-812
    • /
    • 2009
  • Permeation water resulting in the reclaimed land of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water and prevent this second pollution. The material used as Liner layer is the one for water resistance and that of less than permeability coefficient $1{\times}10^{-7}cm/sec$ is widely used. As it is very difficult to secure in bulk this natural clay with low permeability around the field, the suitable way to secure low permeable material is that we use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil which can resist water is commonly used in the site, bentonite mixed soil which is widely used as Liner layer in the reclaimed land of waste is recognized in Liner and durability. In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and uni-axial strength tests. The soil used for the liner is the clay soil located near the site. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of bentonite is recommended for the landfill. After the mixed liner is constructed using the optimum mixing ratio of bentonite, the block samples of the constructed liner are obtained and the strength tests were performed. The hydraulic and strength properties of the liner for construction of the waste landfill were both satisfactory.

  • PDF

Effect of Capillary Barrier on Soil Salinity and Corn Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Lee, Su-Hwan;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yul;Noh, Tae-Hwan;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.398-405
    • /
    • 2014
  • Salt accumulation at soil surface is one of the most detrimental factors for crop production in reclaimed tidal land. This study was conducted to investigate the effect of capillary barriers beneath the soil surface on dynamics of soil salts at coarse-textured reclaimed tidal land. A field experiment was conducted at Saemangeum reclaimed tidal land for two years (2012-2013). Capillary barriers ($3.5{\times}12m$) were treated with crushed-stone, oyster shell waste, coal briquette ash, coal bottom ash, rice hull and woodchip at 40-60 cm depth from soil surface. Silage corn (Zea mays) was cultivated during the experimental period and soil salinity was monitored periodically. Soil salinity was significantly reduced with capillary barrier compared to that of control. Oyster shell waste was one of the most effective capillary barrier materials to control soil salinity at Saemangeum reclaimed tidal land. At the first growing season capillary barrier did not influence on corn growth regardless of types of the material, but plant biomass and withering rate of corn were significantly improved with capillary barrier at the second growing season. The results of this study showed that capillary barrier was effective on the control of soil salinity and improvement of corn growth, which indicated that capillary barrier treatment can be considered one of the best management practices for stable crop production at Saemangeum reclaimed tidal land.

Utilization of Selected Landfill Waste Soils for Road Embankment Materials (도로성토재료로서 폐기물 매립장 선별토사의 활용)

  • Kim, Young-Su;Jung, Sung-Kwan;Choi, Byung-Hak;Lee, Sang-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • The major objectives of this study were to investigate the physical characteristics of selected refuse landfill waste soils which are excepted general waste materials and assessed the possibility of recycling for road construction or embankment materials. The old landfill site which is selected for this study is located at Youngyang in Kyungsangpukdo and it had been dumped and closed for 16-25 years. Therefore, the selected landfill waste soil became to geotechnical engineering characteristics when the closed landfill site is reused for road embankment materials. It was found that it would be better to use the selected waste soil mixed with the ordinary soil.

  • PDF

The Characteristics of the Biochar with the Synthetic Food Waste and Wood Waste for Soil Contaminated with Heavy Metals (인공 음식물 혼합 폐기물 바이오차의 토양 중금속 흡착 가능성을 위한 특성 분석)

  • Baek, Ye-Seul;Lee, Jai-Young;Park, Seong-Kyu;Bae, Sunyoung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • When processing the biomass by Hydrothermal carbonization (HTC), a slow pyrolysis process, it produces bio-gas, biooil, and biochar. Among these end products, biochar is known for isolating or storing carbon and being used as a soil amendment. In this study, the characteristics of biochar generated by HTC at $250^{\circ}C$ for 1 hour, 2 hours, 3 hours, and 20 hours with synthetic food wastes and wood wastes were analyzed for potential uses in soil contaminated with heavy metals. The yield of biochar (weight %) increased when the ratio of wood wastes increased and showed a decreasing tendency as reaction time increased. Elemental analysis of biochar based on various conditions showed a maximum of 70% carbon (C) content. The carbon content showed an increasing tendency with the increase of wood wastes. Iodine adsorption test was peformed to determine the optimum reaction condition, which was 15% wood waste for mixing ratio and 2 hours for reaction time. Using biochar generated at the optimum condition, its capability of adsorbing heavy metals (Cd, Cu, Pb, Zn, Ni) was evaluated. It was concluded that lead (Pb) was removed efficiently while zinc (Zn) and nickel (Ni) were hardly adsorbed by biochar.

Geotechnical Engineering Characteristics and Consolidation Settlement Estimation of Waste Lime Landfill (폐석회 매립지반의 지반공학적 특성 및 압밀침하량산정)

  • Shin, Eun-Chul;Lee, Ae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this study is to examine the consolidation characteristics of waste landfill from sodium carbonate production. The waste lime is a byproduct from the production of soda ash. The consolidation settlement of waste lime landfill was determined for waste lime specimen which obtained from the field boring. The consolidation tests are conducted for determination of the primary and secondary consolidation settlements. The waste lime is classified as an organic soil with high plasticity. As a result of an organic content test, the contents of organic matter in waste lime is much higher than that of normal clay. Finally, the total consolidation settlement of waste lime landfill is calculated by using a theoretical method and computer program for the given initial void ratio, compression index, and embankment height.

Development of Eco-friendly Binder Using Waste Oyster Shells (친환경 굴껍질 고화재(R) 개발)

  • Gil-Lim 한국해양연구원, 연안항만공학본부;Chae Kwang-Suk;Paik Seung-Chul;Yoon Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.79-85
    • /
    • 2005
  • An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce dredged soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with different water content of dredged soils, mixing rates of binder, curing days. Based on test results, eco-friendly binders manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements.

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

Utilization of Liquid Waste from Methane Fermentation as a Source of Organic Fertilizer -III. Effect of Liquid Waste from Methane Fermentation on Maize Yield (메탄발효폐액(醱酵廢液)의 비료화(肥料化)에 관(關)한 연구(硏究) -III. 옥수수에 대(對)한 폐액(廢液)의 비효시험(肥效試驗))

  • Lim, Dong-Kyu;Shin, Jae-Sung;Choi, Du-Hoi;Park, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.333-336
    • /
    • 1987
  • A liquid waste from methane fermantation was applied on Maize field to determine its effect and optimum application rate on the plant growth. A basal application of liquid waste increased a considerable amount of soil water resulting in an increase of germination. Fresh and dry yields of maize plant increased as the liquid waste application rate increased and same as plant growth. Nitrogen and phosphorus components in plant and soil showed the same tendency as the yields. The result indicates that the liquid waste is potentially useful source for a fertilizer and irrigation water.

  • PDF