• Title/Summary/Keyword: Soil Physical

Search Result 1,469, Processing Time 0.026 seconds

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

Influence of Forest Practices on Soil Physical Properties and Facility of Purifying Water Quality in Pinus rigida Stands (리기다소나무 임분에서 산림관리작업이 토양의 물리성 및 산림의 수질정화기능에 미치는 영향)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.61-70
    • /
    • 2007
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study site which consists of Pinus rigida in Jinju National University Experimental Forest for 4 years from Mar. 1, 2002 to Nov. 30, 2006. Averaged tree height of the management site increased by 1.6m, compared to the value of the non-management site in Pinus rigida. Increment of averaged D. B. H. at the management site showed 4.2cm more in Pinus rigida compared with that at non-management sites. Mesopore ratios (pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and buffered soil water were influenced more positively by the management practice. The average electrical conductivity of stream water was $32.9{\mu}S/cm$ within the range of non-polluted stream water.

Assessment of Contribution of Climate and Soil Factors on Alfalfa Yield by Yield Prediction Model (수량예측모델을 통한 Alfalfa 수량에 영향을 미치는 기후요인 및 토양요인의 기여도 평가)

  • Kim, Ji Yung;Kim, Moon Ju;Jo, Hyun Wook;Lee, Bae Hun;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.

A Study on Soil Suitability Criteria for Adzuki Bean

  • Cho, Hyun-Jun;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Hur, Seung-Oh;Shin, Kook-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.412-417
    • /
    • 2014
  • Soil properties and yields of red been were investigated to establish soil suitability of Korean adzuki bean at 166 farms in Korea. The soil morphological and physical properties were investigated by 1:5,000 scale average yield of 2~3 years. The impact factors to the adzuki bean yields and soil properties were selected based on standard error of each factor. The yields of adzuki bean showed the greatest values when the morphology was alluvial plains, the drainage was well or moderately well, the slope was 2~7%, the texture was fine loamy, the gravel content was less than 15% and the available soil depth was more than 100 cm. Contribution factors of soil properties to the yields were 0.18 of morphology, 0.18 of drainage level, 0.23 of slope, 0.20 of texture, 0.11 of gravel content and 0.10 of available soil depth, respectively. Soil suitability levels were set as the best suitable land if score was greater than 90, suitable land if score ranged from 89 to 85, the possible land if the score ranged from 79 to 84 and low productive land if score was less than 78. According to the criteria 37.5% of the production area was the best suitable land, 29.4% was suitable land, 22.3% was possible land and 10.8% was low productive land. The best and suitable lands were total of 66.9% in Gyeongju, Gyeosangbuk-do.

A Study on Soil Environment in Highway Cutting Slope and Adjacent Natural Vegetation Area (고속도로 절토 비탈면과 인접 자연식생지의 토양 환경 비교 분석)

  • Park, Gwan-Soo;Jeon, Gi-Seong;Song, Ho-Kyung;Kim, Nam-Choon;Choi, Jae-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • This study was carried out to estimate the physical and chemical soil characteristics in highway cutting slope areas. The soil was sampled in cutting area and natural vegetation area that was located in the upper areas of the highway cutting slope. The average total soil depth, bulk density, and soil hardness were bad in the highway cutting slope sites. The sandy loam was the most soil texture in the study area. The concentration of soil organic matter and nitrogen were very low in all highway cutting areas. The concentration of exchangeable cations was similar between the highway cutting slope and the natural vegetation sites in each highway. The soil pH was higher in highway cutting slope areas than in natural vegetation sites. In conclusion, chemical and physical properties of soil were bad in the cutting slope than in the natural vegetation area because of the loss of soil by cutting of slope area and less organic matter input by less vegetation in the highway cutting slope area. We should employ possible method to reduce the loss of soil, and compost and fertilization treatment could help to increase soil nutrient content in the cutting slope area.

Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss (코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성)

  • Kim, Young-Sun;Bae, Eun-Ji;Choi, Mun-Jin;Kim, Tae-Wooung;Lee, Geung-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

Water Storage Characteristics of Surface Soil by the Different Forest Floor Conditions(II) (지피상태(地被狀態)에 따른 임지(林地)의 수저유(水貯留) 특성(特性)(II))

  • Lee, Heon Ho;Lee, Chang Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.473-479
    • /
    • 1994
  • This study was carried out to get the basic data for obtaining water resources continuously. Water storage of forest land was estimated by effective water storage based on classifying soil pore. The results were summarized as follows ; 1. Percentage of coarse pores were in the order : Forest>Bare land>Grasses. As soil depth increased, total pores, coarse pores, and maximum water content were decreased, while fine pores increased. 2. Soil pore percentage and physical properties of surface layer(0~20cm) were significantly different among forest floor conditions. However, there were no difference in soil pore percentage and physical properties in 20~40cm and 40~60cm according to forest floor conditions. In the same plot, on the other hand, soil pore percentage and physical properties were significantly different between surface layer(0~20cm) and 20~40cm, but there were no differences between 20~40cm and 40~60cm. 3. Effective water storage was highly correlated with coarse pore in all plots. 4. The model for water storage capacity of each forest floor condition expressed by effective water storage was produced using coarse pores and soil depth.

  • PDF

Effects of Soil Physical properties on Growth in Wasabia japonica Matsum (토양 배지조성이 고추냉이 생육에 미치는 영향)

  • Byeon, Hak-Soo;Seo, Jeong-Sik;Lim, Soo-Jeong;Heo, Su-Jeong;Seo, Sang-Myung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2001
  • This study was conducted to find out the optimum ranges of soil physical properties for wasabi growth by the relationship of soil physical properties and plant growth. Soil bulk density and hardness were higher in decomposition of granite and river sand than hydroball. This root distribution of surface layer was higher in decomposition of granite and river sand than hydroball. Growth characteristics and yield were higher in hydroball than decomposition of granite and river sand. In inlet site, the marketable rhizome weight in decompasition of granite, river sand, hydroball were 298kg/10a, 401kg/10a, 766kg/10a, respectively. But outlet, the weight in three soils were 251kg/10a, 256kg/10a, 633kg/10a, respectively.

  • PDF

A Study on Soil Suitability Criteria for Liriopis Platyphylla

  • Cho, Hyun-Jun;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Chun, Hyen-Chung;Song, Kwan-Cheol;Noh, Dae-Cheol;Yun, Kwan-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.542-548
    • /
    • 2013
  • Soil properties and yields of liriopis platyphylla were investigated to establish soil suitability of Korean liriopis platyphylla at 116 farms in Korea. Morphological and physical properties of the soils were investigated along with the average yield of 2~3 years. The impact factors of soil properties to the yield of liriopis platyphylla were selected based on standard error of each factor. The yields of liriopis platyphylla showed the greatest values when the morphology was alluvial plains, when the drainage was well or moderately well, when the slope was 0-2%, the texture was coarse loamy, when the gravel content was less than 15% and when the available soil depth was more than 100 cm. Contribution factors of soil properties to the yields were 0.15 by morphology, 0.15 by drainage level, 0.13 by slope, 0.18 by texture, 0.16 by gravel content and 0.23 by available soil depth, respectively. Soil suitability classes were set as follows; the best suitable land if score was greater than 92, suitable land if score ranged from 91 to 86, the possible land if the score ranged from 85 to 83, and low productive land if score was less than 82. According to the criteria, 17.8% of the production area was the best suitable land, 43.1% was suitable land, 17.3% was possible land, and 21.8% was low productive land. The sum of both the best and suitable lands were 60.9% of the farm area of Miryang in Gyeongsangnam-do.

Soil Physico-chemical Properties of Organic Grapes Farms with Different Culture Facilities and Soil Management Practices

  • Kim, Sun-Kook;Kim, Byeong-Sam;Kang, Beom-Ryong;Yang, Seung-Koo;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyeong-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.399-407
    • /
    • 2013
  • Organic grape was generally produced in rainshield or plastic greenhouse culture while most of fruits were produced in open field. But little attention has been given to soil properties with different culture facilities in organic grape cultivation. This study was conducted to investigate soil physico-chemical properties of organic grapes farms with different culture facilities and soil management practices. Organic fertilizer was main resource to manage soil at organic grapes farms. Organic grapes farms were applied with total amount of organic fertilizer at one time, either at basal or additional fertilization, whereas conventional grapes farms applied with split fertilization. Bulk density and penetration resistance of soil were lower at both rainshield and green manure-applied plastic greenhouse cultures than those at clean plastic greenhouse culture. Especially, in plastic greenhouse, sod culture with natural weed after green manure application was more effective than general sod culture in improving physical properties of the rhizosphere. The contents of organic matter, available phosphate and exchangeable potassium tended to increase in the soils applied with green manure, and the difference of soil chemical properties were significant between rainshield and plastic greenhouse cultures. The optimum soil management was required in plastic greenhouse because pH, available phosphate and exchangeable cations reached over optimum range. Consequently, the ground cover management is the key factor to affect the chemical properties as well as soil physical properties extensively in plastic greenhouse. It is found that sod culture with natural weed after green manure application resulted in enhancement of utilization efficiency of nitrogen, phosphoric acid and potassium in soil in comparison with general sod culture.