• 제목/요약/키워드: Soil Organic Carbon

검색결과 577건 처리시간 0.03초

극초단파(마이크로파)와 첨가제를 이용한 오염토양 내 준휘발성 유기오염물질 제거 (Removal of Semi-volatile Soil Organic Contaminants with Microwave and Additives)

  • 정상조;최형진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.67-77
    • /
    • 2013
  • To improve the energy efficiency of conventional thermal treatment, soil remediation with microwave has been studied. In this study, the remediation efficiency of contaminated soil with semi-volatile organic contaminants were evaluated with microwave oven and several additives such as water, formic acid, iron powder, sodium hydroxide (NaOH) solution, and activated carbon. For the experiment, loamy sand and sandy loam collected from Imjin river flood plain were intentionally contaminated with hexachlorobenzene and phenanthrene, respectively. The contaminated soils were treated with microwave facility and the mass removals of organic contaminants from soils were evaluated. Among additives that were added to increase the remediation efficiency, activated carbon and NaOH solution were more effective than water, iron powder, and formic acid. When 10 g of hexachlorobenzene (142.4 mg/kg-soil) or phenanthrene (2,138.8 mg/kg-soil) contaminated soil that mixed with 0.5 g iron powder, 0.5 g activated carbon and 1 ml 6.25 M NaOH solution were treated with microwave for 3 minutes, more than 95% of contaminants were removed. The degradation of hexachlorobenzene during microwave treatments with additives was confirmed by the detection of pentachlorobenzene and tetrachlorobenzene. Naphthalene and phenol were also detected as degradation products of phenanthrene during microwave treatment with additives. The results showed that adding a suitable amount of additives for microwave treatments fairly increased the efficiency of removing semi-volatile soil organic contaminants.

Digital mapping of soil carbon stock in Jeolla province using cubist model

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1097-1107
    • /
    • 2020
  • Assessment of soil carbon stock is essential for climate change mitigation and soil fertility. The digital soil mapping (DSM) is well known as a general technique to estimate the soil carbon stocks and upgrade previous soil maps. The aim of this study is to calculate the soil carbon stock in the top soil layer (0 to 30 cm) in Jeolla Province of South Korea using the DSM technique. To predict spatial carbon stock, we used Cubist, which a data-mining algorithm model base on tree regression. Soil samples (130 in total) were collected from three depths (0 to 10 cm, 10 to 20 cm, 20 to 30 cm) considering spatial distribution in Jeolla Province. These data were randomly divided into two sets for model calibration (70%) and validation (30%). The results showed that clay content, topographic wetness index (TWI), and digital elevation model (DEM) were the most important environmental covariate predictors of soil carbon stock. The predicted average soil carbon density was 3.88 kg·m-2. The R2 value representing the model's performance was 0.6, which was relatively high compared to a previous study. The total soil carbon stocks at a depth of 0 to 30 cm in Jeolla Province were estimated to be about 81 megatons.

매립장 사후관리종료를 위한 유기물 함량비 산정방법 (An Estimation Method of Organic Matter Content Ratio for the Termination of Post-closure Maintenance of a Landfill)

  • 천승규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권4호
    • /
    • pp.11-19
    • /
    • 2019
  • This paper examines an assessment method for terminating the post-closure maintenance of a landfill using a simplified landfill gas model. The case study site is the Sudokwon Landfill in Incheon city, which was closed in 2000. The deviations of the results obtained by the regular model and the simplified model were both slightly over 10% from the measured data. Also, the deviation of the simplified model from the regular model has been less than 5% since 2005. Thus, the simplified model could be applied to other landfills that have been closed for at least 5 years. Additionally, the results of the mass balance analysis using the simplified landfill gas model indicated that 39% of the organic carbon was discharged, leading to organic carbon and organic matter content of 7.2 and 17.6%, respectively, in the landfill by the end of 2018.

회화법으로 측정한 퇴비중 유기물 함량을 탄소 함량으로 변환하기 위한 환산계수 결정 (Conversion Factor for Determinating Carbon Contents from Organic Matter Contents in Composts by Ignition Method)

  • 남재작;조남준;정광용;이상학
    • 한국토양비료학회지
    • /
    • 제31권4호
    • /
    • pp.380-383
    • /
    • 1998
  • 본 연구는 퇴비중의 유기물 함량으로부터 탄소함량을 구하기 위한 환산계수를 결정하기 위하여 수행하였다. 퇴비중의 유기물 함량은 회화법으로, 탄소함량은 원소 분석기를 사용하여 분석한 결과 유기물 함량과 탄소함량의 관계는 "탄소함량(%)=$1.995+0.484{\times}$유기물 함량(%)"의 직선 회귀식을 따랐고, 분산분석에 의한 회귀직선의 유의성 검정은 고도로 유의하게 나타났다(P < 0.001). 기존의 토양 유기물 환산계수 1.724나 1.8을 적용할 경우, 퇴비중의 유기물 함량으로부터 환산한 탄소함량은 실제보다 10% 이상 높게 평가되어 우리 나라에서 생산, 판매되는 퇴비의 탄소함량을 구할 때는 상기 회귀식을 적용하는 것이 타당하리라 생각된다.

  • PDF

영주댐 유역 토일천 유입 유기물 및 하천 퇴적물에 대한 질소와 탄소 동위원소 특성 연구 (Characteristics of Nitrogen and Carbon Isotopes on Organic Matter and River Sediments of Toil Stream in Yeongju Dam Basin)

  • 강한;송혜원;김영훈;김정진
    • 자원환경지질
    • /
    • 제55권5호
    • /
    • pp.439-445
    • /
    • 2022
  • 하천퇴적물에 포함된 유기 오염물질의 기원은 다양하지만 주로 자연 기원의 산토양과 인위적 기원인 우분으로 구분할 수 있다. 영주댐 유역 토일천의 하천퇴적물에 포함된 유기오염물질의 기여도를 평가하기 위하여 산토양과 우분 및 하천퇴적물의 질소와 탄소 동위원소 분석을 수행하였다. 탄소동위원소비(δ13C) 평균값은 하천퇴적물 -25.17‰, 우분 -22.34‰, 산토양 -26.39‰으로 하천퇴적물은 산토양의 영향을 조금 더 받은 것으로 판단된다. 질소동위원소비(δ15N) 평균값은(‰)는 하천퇴적물 9.46‰, 산토양 1.99‰, 우분 19.53‰이다. 질소동위원소 분석결과에 의하면 토일천 하천 퇴적물은 자연기원의 산토양보다 인위적 기원인 우분의 기여도가 약간 더 높은 것으로 추정된다.

순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성 (CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay)

  • 강동환;권병혁;김필근
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.217-227
    • /
    • 2010
  • This paper was studied $CO_2$ respiration rate with physicochemical properties of soils at wetland, paddy field and forest in Nongju-ri, Haeryong-myeon, Suncheon city, Jeollanam-do. Soil temperature and $CO_2$ respiration rate were measured at the field, and soil pH, moisture and soil organic carbon were analyzed in laboratory. Field monitoring was conducted at 6 points (W3, W7, W13, W17, W23, W27) for wetland, 3 points (P1, P2, P3) for paddy field and 3 points (F1, F2, F3) for forest in 10 January 2009. $CO_2$ concentrations in chamber were measured 352~382 ppm for wetland, 364~382 ppm for paddy field and 379~390 ppm for forest, and the average values were 370 ppm, 370 ppm and 385 ppm, respectively. $CO_2$ respiration rates of soils were measured $-73{\sim}44\;mg/m^2/hr$ for wetland, $-74{\sim}24\;mg/m^2/hr$ for paddy field and $-55{\sim}106\;mg/m^2/hr$ for forest, and the average values were $-8\;mg/m^2/hr$, $-25\;mg/m^2/hr$ and $38\;mg/m^2/hr$. $CO_2$ was uptake from air to soil in wetland and paddy field, but it was emission from soil to air in forest. $CO_2$ respiration rate function in uptake condition increased exponential and linear as soil temperature and soil organic carbon. But, it in emission condition decreased linear as soil temperature and soil organic carbon. $CO_2$ respiration rate function in wetland decreased linear as soil moisture, but its in paddy and forest increased linear as soil moisture. $CO_2$ respiration rate function in all sites increased linear as soil pH, and increasing rate at forest was highest.

Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea

  • Han, Young-Sub;Lee, Eung-Pill;Park, Jae-Hoon;Lee, Seung-Yeon;Lee, Soo-In;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제42권2호
    • /
    • pp.60-69
    • /
    • 2018
  • Background: This study was conducted from March 2011 to February 2013 in order to evaluate the ecosystem value by examining the organic carbon distribution and cycling in the Quercus glauca forest, evergreen oak community at Seonheul-Gotjawal, Jeju Island. Results: The amount of organic carbon distribution was $124.5ton\;C\;ha^{-1}$ in 2011 and $132.63ton\;C\;ha^{-1}$ in 2012 for aboveground biomass. And it was $31.13ton\;C\;ha^{-1}$ in 2011 and $33.16ton\;C\;ha^{-1}$ in 2012 for belowground biomass. In total, the amount of organic carbon distribution in plants was 155.63 and $165.79ton\;C\;ha^{-1}$ in 2011 and 2012, respectively. In 2011 and 2012 respectively, the amount of organic carbon distribution was 3.61 and $6.39ton\;C\;ha^{-1}$ in the forest floor and it was 78.89 and $100.71ton\;C\;ha^{-1}$ in the soil. As shown, most carbon was distributed in plants. Overall, the amount of organic carbon distribution of the Q. glauca forest was $238.13ton\;C\;ha^{-1}$ in 2011 and $272.89ton\;C\;ha^{-1}$ in 2012. In 2011, the amount of organic carbon fixed in plants through photosynthesis (NPP) was $14.22ton\;C\;ha^{-1}\;year^{-1}$ and the amount of carbon emission of soil respiration was $16.77ton\;C\;ha^{-1}\;year^{-1}$. The net ecosystem production (NEP) absorbed by the Q. glauca forest from the atmosphere was $5ton\;C\;ha^{-1}\;year^{-1}$. Conclusions: The carbon storage value based on such organic carbon distribution was estimated about $23.81mil\;won\;ha^{-1}$ in 2011 and $27.29mil\;won\;ha^{-1}$ in 2012, showing an annual increment of carbon storage value by $3.48mil\;won\;ha^{-1}$. The carbon absorption value based on such NEP was estimated about $500,000won\;ha^{-1}\;year^{-1}$.

Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models

  • Al Masud, Md Abdullah;Choi, Jiyeon;Shin, Won Sik
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권6호
    • /
    • pp.47-57
    • /
    • 2022
  • A number of different methods have been used for modeling the sorption of volatile organic chlorinated compounds such as tetrachloroethylene/perchloroethylene (PCE). In this study, PCE was adsorbed in several natural sorbents, i.e., Pahokee peat, vermicompost, BionSoil®, and natural soil, in the batch experiments. Several sorption models such as linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. The organic carbon normalized partition coefficient values (log Koc = 1.50-3.13) in four different sorbents were less than the logarithm of the octanol-water partition coefficient (log Kow = 3.40) of PCE due to high organic carbon contents. The log Koc decreased linearly with log foc and log C/N ratio, but increased linearly with log O/C, log H/C, and log (N+O)/C ratio. Both log KF,oc or log KF,oc decreased linearly with log foc (R2 = 0.88-0.92) and log C/N ratio (R2 = 0.57-0.76), but increased linearly with log (N+O)/C (R2 = 0.93-0.95). The log qmax,oc decreased linearly as log foc and log C/N increased, whereas it increased with log O/C, log H/C and log (N+O)/C ratios. The log qmax,oc increased linearly with (N+O)/C indicating a strong dependence of qmax,oc on the polarity index. The results showed that PCE sorption behaviors were strongly correlated with the physicochemical properties of soil organic matter (SOM).

Carbon Storage in an Age-Sequence of Temperate Quercus mongolica Stands in Central Korea

  • Kim, Sung-geun;Kwon, Boram;Son, Yowhan;Yi, Myong Jong
    • Journal of Forest and Environmental Science
    • /
    • 제34권6호
    • /
    • pp.472-480
    • /
    • 2018
  • This study was conducted to estimate carbon storage in Quercus mongolica stands based on stand age class, and to provide basic data on the carbon balance of broad-leaved forests of Korea. The research was conducted at the experimental forest of Kangwon National University, Hongcheon-gun County, Gangwon-do Province, Korea. Three plots were set up in each of three Q. mongolica forest stands (III, V, and VII) to estimate the amount of carbon stored in Q. mongolica aboveground vegetation, coarse woody debris (CWD), organic layer, mineral soil, and litterfall. The carbon storage of the aboveground vegetation increased with an increase in stand age, while the carbon storage ratio of stems decreased. The carbon storage of the organic layer, CWD, and litterfall did not show any significant differences among age classes. In addition, the carbon concentration and storage in the forest soils decreased with depth, and there were no differences among age classes for any soil horizon. Finally, the total carbon storage in the III, V, and VII stands of Q. mongolica were 132.2, 241.1, and $374.4Mg\;C\;ha^{-1}$, respectively. In order to predict and effectively manage forest carbon dynamics in Korea, further study on deciduous forests with other tree species in different regions will be needed.

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.