DOI QR코드

DOI QR Code

Characteristics of Nitrogen and Carbon Isotopes on Organic Matter and River Sediments of Toil Stream in Yeongju Dam Basin

영주댐 유역 토일천 유입 유기물 및 하천 퇴적물에 대한 질소와 탄소 동위원소 특성 연구

  • Kang, Han (Watershed and Total Load Management Research Division, National Institute of Environmental Research) ;
  • Song, Hye Won (Department of Earth and Environmental Sciences, Andong National University) ;
  • Kim, Young Hun (Department of Environmental Engineering, Andong National University) ;
  • Kim, Jeong Jin (Department of Earth and Environmental Sciences, Andong National University)
  • 강한 (국립환경과학원 유역총량연구과) ;
  • 송혜원 (안동대학교 지구환경과학과) ;
  • 김영훈 (안동대학교 환경공학과) ;
  • 김정진 (안동대학교 지구환경과학과)
  • Received : 2022.08.20
  • Accepted : 2022.10.05
  • Published : 2022.10.28

Abstract

Organic pollutants that contained in stream sediments have origins of mountain soil in natural and cattle manure in human activity. Nitrogen and carbon isotope analysis for mountain soil, cattle manure and stream sediment were performed for contribution evaluation of organic pollutants in Toil stream of Yeongju dam basin. Average carbon isotope ratio(δ13C) is -25.17‰, -22.34‰, and -26.39‰ for river sediments, cattle manure and mountain soil, respectively. Result of carbon isotope analysis suggests that river sediments are more affected by acid soils. Average value of the nitrogen isotope ratio (δ15N) is 9.46% for river sediment, 1.99% for mountain soil, and 19.53% for cattle manure. Result of nitrogen isotopic analysis show that contribution of cattle mature is slightly higher than that of mountain soil in Toil stream sediments.

하천퇴적물에 포함된 유기 오염물질의 기원은 다양하지만 주로 자연 기원의 산토양과 인위적 기원인 우분으로 구분할 수 있다. 영주댐 유역 토일천의 하천퇴적물에 포함된 유기오염물질의 기여도를 평가하기 위하여 산토양과 우분 및 하천퇴적물의 질소와 탄소 동위원소 분석을 수행하였다. 탄소동위원소비(δ13C) 평균값은 하천퇴적물 -25.17‰, 우분 -22.34‰, 산토양 -26.39‰으로 하천퇴적물은 산토양의 영향을 조금 더 받은 것으로 판단된다. 질소동위원소비(δ15N) 평균값은(‰)는 하천퇴적물 9.46‰, 산토양 1.99‰, 우분 19.53‰이다. 질소동위원소 분석결과에 의하면 토일천 하천 퇴적물은 자연기원의 산토양보다 인위적 기원인 우분의 기여도가 약간 더 높은 것으로 추정된다.

Keywords

Acknowledgement

이 논문은 2020년도 경북녹색환경지원센터 연구개발사업의 지원으로 연구되었으며 이에 감사드립니다.

References

  1. Chiaradia, M., Chenhall, B.E., Depers, A.M., Gulson, B.L. and Jones, B.G. (1997) Identification of historical lead sources in roof dusts and recent lake sediments from an industrialized area: indications from lead isotopes. Sci. Total Environ., v.205, p.107-128. doi: 10.1016/s0048-9697(97)00199-x
  2. Choi, Y.J., Jung, J.W., Choi, W.J., Yoon, K.S., Choi, D.H., Lim, S.S., Jeong, J.H., Lim, B.J. and Chang, N.I. (2011) Estimation of Pollution Sources of Oenam Watershed in Juam Lake using Nitrogen Concentration and Isotope Analysis. J. Korean Society on Water Quality, v.27, p.467-474.
  3. Costanzo, S.D., O'Donohue, M.J., Dennison, W.C., Loneragan, N.R. and Thomas, M. (2001) A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin, v.42, p.149-156. doi: 10.1016/S0025-326X(00)00125-9
  4. Farmer, J.G., Mackenzie, A.B., Sugden, C.L., Edgar, P.J. and Eades, L.J. (1997) A comparison of the historical lead pollution records in peat and freshwater lake sediments from central Scotland. Water, Air, and Soil Pollution, v.100, p.253-270. doi: 10.1023/A:1018320425006
  5. Fry, B. (1988) Food web structure on Georges Bank from stable C,N, and S isotopic compositions. Limnology and Oceanography, v.33, p.1182-1190. doi: 10.4319/lo.1988.33.5.1182
  6. Kim, M.S., Lee, E.J., Yoon, S.H., Lim, B.L., Park, J.S., Park, H.W., Chung, H.M. and Choi, J.W. (2017) Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15NNO3 and δ15N-NH4). Korean Jour. Ecology and Environment, v.50, p.452-458. doi: 10.11614/KSL.2017.50.4.452
  7. Lee, Y.J., Jeong, B.K., Shin, Y.S., Kim, S.H. and Shin, K.H. (2013) Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (δ13C, δ15N). Korean J. Ecology and Environment, v.46, p.175-184. doi: 10.11614/KSL.2013.46.2.175
  8. Li, C., Li, S.L., Yue, F.J., Liu, J., Zhong, J., Yan, Z.F., Zhang, R.C., Wang, Z.J. and Xu, S. (2019) Identification of sources and transformations of nitrate in the Xijiang river using nitrate isotopes and bayesian model. Science of the Total Environment, v.646, p.801-810. doi: 10.1016/j.scitotenv.2018.07.345
  9. Meyers, P.A. (1997) Organic geochemical proxies of paleoceanographic, plaeolimnologic, and paleoclimatic processes. Organic Geochemistry, v.27, p.213-250. doi: 10.1016/S0146-6380(97)00049-1
  10. Monna, F., Aiuppa, C.J., Varrica, D. and Dongarra, G. (1999) Pb isotope composition in Lichens and aerosols from eastern Sicily: insights into the region impact of volcanoes on the environment. Environ. Sci. Technol., v.33, p.2517-2523. doi: 10.1021/es9812251
  11. Murphy, B.L. and Morrison, R.D. (2014) Introduction to environmental forensics, Academic Press.
  12. Nam, T.H., Ryu, H.S., Kang, T.W., Han, Y.U., Kim, J.H., Lee, K.H., Hwang, S.H. and Kim, K.H. (2019) Quantifying nitrogen source contribution ratios using stable isotope method: Application of Bayesian mixing model. J. Korean Society on Water Environment, v.35, p.510-519. doi: 10.15681/KSWE.2019.35.6.510
  13. NIENTR (2018) Naeseongcheon Basin Pollution Load Status, National Institute of Environmental Research.
  14. NIENTR (2019) National Pollution Source Investigation Report as of 2017, National Institute of Environmental Research.
  15. O'Nilons, R.K., Frank, M., von Blanckenburg, F. and Ling, H.F. (1998) Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth and Planetary Science Letters, v.155, p.15-28. doi: 10.1016/S0012-821X(97)00207-0
  16. Oren, O., Yechieli, Y., Bohlke, J.K. and Dody, A. (2004) Contamination of groundwater under cultivated fields in an arid environment, Central Arava Valley, Israel. J. Hydrology, v.290, p.312-328. doi: 10.1016/j.jhydrol.2003.12.016
  17. Outridge, P.M., Hermanson, M.H. and Lockhart, W.L. (2002) Regional variations in atmospheric deposition and sources of anthropogenic lead in lake sediments across the Canadian Arctic. Geochim. Cosmochim. Acta, v.66, p.3521-3531. doi: 10.1016/S0016-7037(02)00955-9
  18. Shin, W.S., Aikawa, Y. and Nishimura, O. (2012) Chemical properties of sediment in Nanakita estuarine tidal flat: Estimation of sedimentary organic matter origin by stable isotope and fatty acid. Environmental Engineering Research, v.17, p.77-82. doi: 10.4491/eer.2012.17.2.077
  19. Tesdal, J.E., Gallbraith, E.D. and Kienast, M. (2013) Nitrogen isotopes in bulk marine sediment-linking seafloor observations with subseafloor records. Biogeosciences, v.10, p.101-118. doi: 10.5194/bg-10-101-2013
  20. Townsend, A.T. and Snape, I. (2002) The use of Pb isotope ratios determined by magnetic sector ICP-MS for tracing Pb pollution in marine sediments near Casey Station, East Antarctica. J. Analytical Atomic Spectrometry, v.17, p.922-928. doi: 10.1039/B203449M
  21. Vitoria, L., Otero, N., Soler, A. and Canals, A. (2004) Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ. Sci. Technol., v.38, p.3254-3262. doi: 10.1021/es0348187
  22. Ye, X., Wang, A. and Chen, J. (2013) Temporal-spatial variation and source analysis of carbon and nitrogen in a tidal wetland of Luoyuan bay. Acta Ecologica Sinica, v.33, p.150-157. doi: 10.1016/j.chnaes.2013.03.005
  23. Yi, Q., Chen, Q., Hu, L. and Shi, W. (2017) Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks. Environ. Sci. Technol., v.51, p.5396-5403. doi: 10.1021/acs.est.6b06278
  24. Zhang, Y., Shi, P., Li, F., Wei, A., Song, J. and Ma, J. (2018) Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere, v.208, p.493-501. doi: 10.1016/j.chemosphere.2018.05.164