DOI QR코드

DOI QR Code

Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea

  • Han, Young-Sub (Division of Ecological Survey Research, National Institute of Ecology) ;
  • Lee, Eung-Pill (Division of Ecological Survey Research, National Institute of Ecology) ;
  • Park, Jae-Hoon (Department of Biology, Kongju National University) ;
  • Lee, Seung-Yeon (Department of Biology, Kongju National University) ;
  • Lee, Soo-In (Department of Biology, Kongju National University) ;
  • You, Young-Han (Department of Biology, Kongju National University)
  • Received : 2017.11.30
  • Accepted : 2018.04.27
  • Published : 2018.05.31

Abstract

Background: This study was conducted from March 2011 to February 2013 in order to evaluate the ecosystem value by examining the organic carbon distribution and cycling in the Quercus glauca forest, evergreen oak community at Seonheul-Gotjawal, Jeju Island. Results: The amount of organic carbon distribution was $124.5ton\;C\;ha^{-1}$ in 2011 and $132.63ton\;C\;ha^{-1}$ in 2012 for aboveground biomass. And it was $31.13ton\;C\;ha^{-1}$ in 2011 and $33.16ton\;C\;ha^{-1}$ in 2012 for belowground biomass. In total, the amount of organic carbon distribution in plants was 155.63 and $165.79ton\;C\;ha^{-1}$ in 2011 and 2012, respectively. In 2011 and 2012 respectively, the amount of organic carbon distribution was 3.61 and $6.39ton\;C\;ha^{-1}$ in the forest floor and it was 78.89 and $100.71ton\;C\;ha^{-1}$ in the soil. As shown, most carbon was distributed in plants. Overall, the amount of organic carbon distribution of the Q. glauca forest was $238.13ton\;C\;ha^{-1}$ in 2011 and $272.89ton\;C\;ha^{-1}$ in 2012. In 2011, the amount of organic carbon fixed in plants through photosynthesis (NPP) was $14.22ton\;C\;ha^{-1}\;year^{-1}$ and the amount of carbon emission of soil respiration was $16.77ton\;C\;ha^{-1}\;year^{-1}$. The net ecosystem production (NEP) absorbed by the Q. glauca forest from the atmosphere was $5ton\;C\;ha^{-1}\;year^{-1}$. Conclusions: The carbon storage value based on such organic carbon distribution was estimated about $23.81mil\;won\;ha^{-1}$ in 2011 and $27.29mil\;won\;ha^{-1}$ in 2012, showing an annual increment of carbon storage value by $3.48mil\;won\;ha^{-1}$. The carbon absorption value based on such NEP was estimated about $500,000won\;ha^{-1}\;year^{-1}$.

Keywords

References

  1. Armson, K. A. (1977). Forest soils: properties and processes. Canada: University of Toronto Press.
  2. Black, C. A. (1965). Methods of soil analysis, part 2. chemical and microbiological properties. Madison: Inc.
  3. Boumans, R., Costanza, R., Farley, J., Wolson, M. A., Portela, R., Rotmans, J., Villa, F., & Grasson, M. (2002). Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecological Economic, 41, 529-560. https://doi.org/10.1016/S0921-8009(02)00098-8
  4. Brander, L. M., Wagtendonk, A. J., Hyssain, S. S., McVittie, A., Verburg, P. H., de Groot, R. S., & van der Ploeg, S. (2012). Ecosystem service values for mangroves in Southeast Asia: a meta-analysis and value transfer application. Ecosystem Services, 1, 62-69. https://doi.org/10.1016/j.ecoser.2012.06.003
  5. Choi, B. J., Baek, G., Jo, C. G., Park, S. W., Yoo, B. O., Jeong, S. Y., Lee, K. S., & Kim, C. (2016). Biomass and nutrient stocks of tree components by stand density in a Quercus glauca plantation. Journal of Korean Forest Society, 105(3), 294-302. https://doi.org/10.14578/jkfs.2016.105.3.294
  6. Eswaran, H., Van den Berg, E., Reich, P., & Kimble, J. (1995). Global soil carbon resources. In R. Lal, J. Kimble, E. Levine, & B. A. Stewart (Eds.), Soils and global change (pp. 27-44). Boca Raton: CRC-Press.
  7. Gill, R. W. (1969). Soil microarthropod abundance following old-field litter manipulation. Ecology, 50, 805-816. https://doi.org/10.2307/1933694
  8. Gitay, H., Brown, S., Easterling, W., & Jallow, B. (2001). Ecosystems and their goods and services. In J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken, & K. S. White (Eds.), Climate change 2001: impacts, adaptation and vulnerability. Contribution of working group II to the third assessment report of the IGBP on climate change. New York: Cambridge University Press.
  9. Han, B. H., Kim, J. Y., Choi, I. T., & Lee, K. J. (2007). Vegetation structure of evergreen broad-leaved forest in Dongbaekdongsan(Mt.), Jeju-Do, Korea. Korean Journal of Environment and Ecology, 21(4), 336-346.
  10. Han, D. Y. (2002). Carbon cycling modelling by litter decomposition rate and estimation of carbon dioxide budget in Quercus mongolica forest at Mt. Songni National Park. Ph.D. dissertation. Korea: Chungbuk National University.
  11. Han, Y. S. (2014). A study on carbon distribution and budget of dominant plant community in Gotjawal, Jeju Island. M.S. thesis. Korea: Kongju National University.
  12. Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separation root and soil microbial contributions to soil respiration: A review of methods and observation. Biogeochemistry, 48, 115-146. https://doi.org/10.1023/A:1006244819642
  13. Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., & Woodwell, G. M. (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of $CO_2$ to the atmosphere. Ecological Monographs, 53, 235-262. https://doi.org/10.2307/1942531
  14. IPCC. (2013). Climate change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge university press.
  15. Jang, R. H., Cho, K. T., & You, Y. H. (2014). Annual biomass production and amount of organic carbon in Abis koreana forest of subalpine zone at Mt. Halla. Korean Journal of Environment and Ecology, 28(6), 627-633. https://doi.org/10.13047/KJEE.2014.28.6.627
  16. Jeong, H. M., Kim, H. R., Cho, K. T., Lee, S. H., Han, Y. S., & You, Y. H. (2014). Aboveground biomass estimation of Quercus glauca in evergreen forest, Kotzawal wetland, Cheju Island, Korea. Journal of Wetlands Research, 16(2), 245-250. https://doi.org/10.17663/JWR.2014.16.2.245
  17. Jeong, H. M., Kim, H. R., & You, Y. H. (2013). A study on the ecosystem services of wetland 1. Effective biological control of the mosquito larvae using native fishes. Journal of Wetlands Research, 15(1), 19-24. https://doi.org/10.17663/JWR.2013.15.1.019
  18. Jin, F., Yang, H., & Zhao, Q. (2000). Progress in the research of organic carbon storage. The Soil, 32(1), 11-17.
  19. Johnson, F. L., & Risser, P. G. (1974). Biomass, annual net primary production and dynamics of six mineral elements in a post oak-blackjack oak forest. Ecology, 55, 1246-1258. https://doi.org/10.2307/1935453
  20. Kang, K. N. (2010). A study on carbon storage in aboveground, root, and fine root of major afforestation species of Korea-a case study of Pinus densiflora, Pinus koraiensis, Larix leptolepis and Quercus acutissima stands Gongju area, Chungnam Province.-. Ph.D. Disseration. Korea: Chungnam National University.
  21. Kang, S. J., & Kwak, A. K. (1998). Comparisons of phytomass and productivity of watershed forest by allometry in South Han River. Journal of Korea Forestry Energy Research Society, 17(1), 8-12.
  22. Kawk, J. I., Lee, K. J., Han, B. H., Song, J. H., & Jang, J. S. (2013). A study on the vegetation structure of evergreen broad-leaved forest Dongbaekdongsan(Mt.) in Jeju-do, Korea. Korean Journal of Environment and Ecology, 27(2), 241-252.
  23. Kim, J. H., Kim, R. H., Youn, H. J., Lee, S. W., Choi, H. T., Kim, J. J., Park, C. R., & Kim, K. D. (2012). Valuation of nonmarket forest resources. The Journal of Korean Institute of Forest Recreation, 16(4), 9-18.
  24. Kim, Y. H. (2015). Estimation of secondary emissions from forest carbon offset projects. Journal of Climate Change Research, 6(4), 257-265. https://doi.org/10.15531/ksccr.2015.6.4.257
  25. Koo, M. H., Lee, D. K., & Jung, T. Y. (2012). A study on the contexts of ecosystem services in the policy making process. Journal of the Korean Society of Environmental Restoration Technology, 15(5), 58-102.
  26. Kremen, C. (2005). Managing ecosystem services: what do we need to know about their ecology? Ecology Letters, 8(5), 468-479. https://doi.org/10.1111/j.1461-0248.2005.00751.x
  27. Lee, J. S., & Kim, C. S. (1988). Biomass production of Machilus thunbergii S. Et Z. Stand at Bogil Island in Korea. Journal of Korean Forestry Society, 77(1), 10-16.
  28. Lee, J. Y., Kim, D. K., Won, H. Y., & Mun, H. T. (2013). Organic carbon distribution budget in the Pinus densiflora Forest at Mt. Worak National Park. Korean Journal of Environment and Ecology, 27(5), 561-570. https://doi.org/10.13047/KJEE.2013.27.5.561
  29. Lee, K. J. (2013). Carbon budget and nutrient cycling in the Quercus acutissima forest. Ph.D. Dissertation. Korea: Kongju National University.
  30. Lee, K. J., & Mun, H. T. (2005). Organic carbon distribution in an oak forest. Journal of Ecology and Environment, 28(5), 265-270.
  31. Lee, K. J., Won, H. Y., & Mun, H. T. (2012). Contribution of root respiration to soil respiration for Querecus acutissima forest. Korean Journal of Environment and Ecology, 26(5), 780-786.
  32. Lee, M., Nakane, K., Nakatsubo, T., & Koizumi, H. (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant and Soil, 255(1), 311-318. https://doi.org/10.1023/A:1026192607512
  33. Lee, N. Y., Koo, J. W., Noh, N. J., Kim, J., & Son, Y. (2010). Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, Central Korea. Journal of Plant Research, 123(4), 485-495. https://doi.org/10.1007/s10265-010-0316-7
  34. Lee, S. K. (2011). Production and litter decomposition and organic carbon distribution in Pinus densiflora and Quercus mongolica and Robinia pseudoacacia forests at Mt. Nam. M.S. Thesis. Korea: Kongju National University.
  35. Lee, S. T., Hwang, J. H., Lee, K. J., Shin, H. C., Kim, B. B., Park, M. S., Jun, K. S., & Cho, H. S. (2007). Biomass Expansion Factors(BEFs) for Quercus acuta according to age classes. Korean Journal of Environment and Ecology, 21(6), 554-558.
  36. Llody, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8(3), 315-323. https://doi.org/10.2307/2389824
  37. MA(Millennium Ecosystem Assessment). 2005. Ecosystems and human wellbeing millennium ecosystem assessment island press. Washington DC.
  38. Malmsheimer, R. W., Heffernan, P., Brink, S., Crandall, D., Deneke, F., Galik, C., Gee, E., Helms, J. A., McClure, N., Mortimer, M., Ruddell, S., Smith, M., & Stewart, J. (2008). Forest management solutions for mitigating climate change in the United States. Journal of Forestry, 106(3), 115-173.
  39. Ministry of environment. (2004). A study on implementation plan of greenhouse gas emission trading system in Korea (p. 185). Ministry of environment.
  40. Nakane, K., Kohno, T., & Horikoshi, T. (1996). Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecological Research, 11(2), 111-119. https://doi.org/10.1007/BF02347678
  41. Nakane, K., Yamamoto, M., & Tsubota, H. (1983). Estimation of root respiration rate in a mature forest ecosystem. Japanese Journal of Ecology, 33, 397-408.
  42. Namgung, J. (2010). Production and nutrient cycling in Quercus variabilis forest at Mt. Worak. Ph.D. Dissertation. Korea: Kongju National University.
  43. Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D. R., Chan, K. M. A., Daily, G. C., Goldstein, J., Kareiva, P. M., Lonsdorf, E., Naidoo, R., Ricketts, T. H., & Shaw, M. R. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4-11. https://doi.org/10.1890/080023
  44. OECD. (1998). Economic modelling of climate change. Workshop Report.
  45. Busan development institute. (2011). Improvement of forest public functions in Busan: application of monetary valuation (pp. 1-77). Busan Development Institute.
  46. Oh, W. S., Choi, S., Kwon, H. S., Lee, Y. K., Jung, P. M., Shin, J. S., Jeon, S. H., Bang, E. J., Kim, B. R., Lee, T. H., Kim, J. I., Park, H. J., Song, H. R., Kim, J. M., & Choe, J. C. (2015). National ecosystem assessment for the sustainable land management -regulation services-. National Institute of Ecology. Strategy research (pp. 1-221).
  47. Park, I. H., & Moon, G. S. (1994). Biomass, net production and biomass estimation equations in some natural Quercus forests. Journal of Korean Forest Society., 83(2), 246-253.
  48. Pyo, J. H., Kim, S. U., & Mun, H. T. (2003). A study on the carbon budget in Pinus koreansis plantation. Journal of Ecology and Environment, 26(3), 129-134.
  49. Raich, J. W., & Potter, C. S. (1995). Global patterns of carbon dioxide emission from soil. Global Biochemical Cycle, 9(1), 23-36. https://doi.org/10.1029/94GB02723
  50. Rodin, L. E., & Bazilevich, N. I. (1967). Production and mineral cycling in terrestrial vegetation. London: Oliver and Boyd.
  51. Roh, Y. H., Kim, C. K., & Hong, H. J. (2016). Time-series changes to ecosystem regulating services in Jeju: focusing on estimating carbon sequestration and evaluating economic feasibility. Journal of Environmental Policy and Administration, 24(2), 29-44. https://doi.org/10.15301/jepa.2016.24.2.29
  52. Schmitt, M. D. C., & Grigal, D. F. (1981). Generalized biomass estimation equations for Betula papyrifera Marsh. Canadian Journal of Forest Research, 11(4), 837-840. https://doi.org/10.1139/x81-122
  53. Shin, C. H. (2012). Carbon budget and nutrient cycling in Quercus mongolica forest at Mt. Worak National Park. Ph.D. Dissertation. Korea: Kongju National University.
  54. Son, Y. M., Kim, R. H., Kang, J. T., Lee, K. S., & Kim, S. W. (2014). A practical application and development of carbon emission factors for 4 major species of warm temperate forest in Korea. Journal of Korean Forest Society, 103(4), 593-598. https://doi.org/10.14578/jkfs.2014.103.4.593
  55. Song, S. T., & Yoon, S. (2002). Lavas in Gotjawal terrain, Jeju Island, Korea no. 1. Jocheon-Hamdeok Gotjawal terrain. Journal of the Geological Society of Korea, 38(3), 377-389.
  56. Tritton, L. M. and Hornbeck, J. W. (1982). Biomass equations for major tree species of the northeast. United States Department of Agriculture Forest Service. Northeastern Forest Experiment Station. General Technical Report NE-69.
  57. Vandewlle, M., Sykes, M. T., Harrison, P. A., Luck, G. W., Berry, P., Bugter, R., Dawson, T. P., Feld, C. K., Harrington, R., Haslett, J. R., Hering, D., Jones, K. B., Jongman, R., Lavorel, S., Martins da Silva, P., Moora, M., Paterson, J., Rounsevell, M. D. A., Sandin, L., Settele, J., Sousa, J. P. and Zobel, M. (2009). Review paper on concepts of dynamic ecosystems and their services. The RUBICODE Project: Rationalising Biodiversity Conservation in Dynamic Ecosystems.
  58. Wang, G., Qian, J., Cheng, G., & Lai, Y. (2002). Soil organic carbon pool of grassland on the Qinghai-Tibetan plateau and its global implication. The Science of the Total Environment, 291, 207-217. https://doi.org/10.1016/S0048-9697(01)01100-7
  59. Wang, X., Nakatsubo, T., & Nakane, K. (2012). Impacts of elevated $CO_2$ and temperature on soil respiration in warm temperate evergreen Quercus glauca stands: An open-top chamber experiment. Ecological Research, 27(3), 595-602. https://doi.org/10.1007/s11284-012-0932-x
  60. Waring, R. H., & Schlesinger, W. H. (1987). Forest ecosystems. New York: Academic Press. Inc.
  61. Wattage, P. (2011). Valuation of ecosystem services in coastal ecosystems: Asian and European perspectives. Ecosystem Services Economics. Working Paper Series.
  62. Won, H. Y. (2015). Valuation of ecosystem services through organic carbon distribution and cycling in the Quercus mongolica, Quercus variabilis and Pinus densiflora Forest at Mt. Worak National Park. Ph.D. Dissertation. Korea: Kongju National University.
  63. Won, H. Y., Kim, D. K., Han, A., Lee, Y. S., & Mun, H. T. (2016). Distribution and absorption of organic carbon in Quercus mongolica and Pinus densiflora forest at Mt. Gumgang in Seosan. Korean Journal of Environment and Ecology, 30(2), 243-252. https://doi.org/10.13047/KJEE.2016.30.2.243
  64. Won, H. Y., Lee, Y. S., & Mun, H. T. (2015). Valuation of ecosystem services through organic carbon distribution and cycling in the Pinus densiflora Forest in Mt. Worak National Park. Journal of Wetlands Research, 17(4), 332-338. https://doi.org/10.17663/JWR.2015.17.4.332
  65. Won, H. Y., Oh, K. H., Pyo, J. H., & Mun, H. T. (2012). Decay rate and nutrient dynamics during litter decomposition of Quercus acutissima and Quercus mysinaefolia. Korean Journal of Environment and Ecology, 26(1), 74-81.
  66. Won, H. Y., Shin, C. H., & Mun, H. T. (2014). Valuation of ecosystem services through organic carbon distribution and cycling in the Quercus mongolica Forest at Mt. Worak National Park. Journal of Wetlands Research, 16(3), 315-325. https://doi.org/10.17663/JWR.2014.16.3.315
  67. Wunder, S. (2005). Payment for environmental services: Some nuts and bolts. CIFOR Occational Paper. NO. 42.
  68. Yun, J. H., Kim, J. H., Oh, K. H., & Lee, B. Y. (2011). Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean Journal of Environment and Ecology, 25(1), 047-056.

Cited by

  1. The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia vol.42, pp.4, 2018, https://doi.org/10.1186/s41610-018-0081-4