• Title/Summary/Keyword: Carbon budget

Search Result 120, Processing Time 0.027 seconds

Evaluation Methods of Carbon Reduction Contribution for Green Budget of National R&D Projects in Agricultural Sector (농업분야 탄소인지예산제도 도입을 위한 국가연구개발사업의 탄소저감 기여도 평가 방안)

  • Kim, Solhee;Han, Seunghyun;Kang, Seong-Soo;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.41-51
    • /
    • 2022
  • Carbon neutrality is emerging as a new paradigm for the international society by transiting from climate change to climate risk. This study proposes evaluation methods for the carbon reduction contribution of climate-related national R&D projects in order to introduce a green budget system in the agricultural sector. We considered the domestic and foreign green budget systems and classified national R&D projects into positive, negative, and neutral from the perspective of carbon reduction. The results of this study propose three methods to estimate the monetary costs and carbon benefits by adopting the framework for the economic evaluation of national R&D projects conducted by the Rural Development Administration. These methods support to evaluate the potential contribution to carbon reduction of national R&D projects in the agricultural sector. Finally, the proposed methods were tested and verified for the efficiency and validity of evaluating carbon reduction contribution. These evaluation methods of the carbon reduction contribution can be used as a basic methodology for the pre-budget calculations of national R&D projects and the contribution for the greenhouse gas reduction budget.

Two Decades of International Climate Negotiations - Carbon Budget Allocation Approach to Re-shaping Developing Country Strategies

  • Yedla, Sudhakar;Garg, Sandhya
    • East Asian Economic Review
    • /
    • v.18 no.3
    • /
    • pp.277-299
    • /
    • 2014
  • Climate negotiations have been going on for the last two decades and the awareness for impacts of climate change has improved substantially. However, the trends of global $CO_2$ emissions did not reveal any encouraging signs, with developing countries emitting even more $CO_2$ and industrialized nations showing no signs of reducing emissions to below their 1990 levels. In order to meet the ambitious targets set by the Stern report for the next two decades, it is important to find new and path-breaking approaches to climate change. This paper attempts to analyze the use of carbon/development space historically, at present and in the future with a focus on equity. Trends analysis focuses on the last two decades (Post Rio) and the carbon budget based analysis considers a period of 1850-2050. Industrialized countries are found to have significantly overshot their budgeted allocation for the last 160 years. Both the developing and industrialized countries are overshooting the present budget estimates based on world per capita budget for the next forty years and proportional to the population of each country. It is important for the industrialized countries to bring down their emissions to meet their carbon budgets while the developing countries use their development space as a guideline for their development path. Furthermore, this paper presents aggressive and regressive scenarios for the industrialized countries to compensate for the climate debt they have created.

Global Carbon Cycle and Budget Study (지구규모의 탄소 순환 및 물질수지 연구)

  • 권오열
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.429-440
    • /
    • 1996
  • A global carbon cycle model (GCCM), that incorporates interaction among the terrestrial biosphere, ocean, and atmosphere, was developed to study the carbon cycling aid global carbon budget, especially due to anthropogenic $CO_2$ emission. The model that is based on C, 13C and 14C mass balance, was calibrated with the observed $CO_2$ concentration, $\delta$13C and $\Delta$14C in the atmosphere, Δ14C in the soil, and $\Delta$14C in the ocean. Also, GCCM was constrained by the literature values of oceanic carbon uptake and CO, emissions from deforestation. Inputs (forcing functions in the model) were the C, 13C and 14C as $CO_2$ emissions from fossil fuel use, and 14C injection into the stratosphere by bomb-tests. The simulated annual carbon budget of 1980s due to anthropoRenic $CO_2$ shows that the global sources were 5.43 Gt-C/yr from fossil fuel use and 0.91 Gt-C/yr from deforestation, and the sinks were 3.29 Gt-C/yr in the atmosphere, 0.90 Gt-C/yr in the terrestrial biosphere and 2.15 Gt-C/yr in the ocean. The terrestrial biosphere is currently at zero net exchange with the atmosphere, but carbon is lost cia organic carbon runoff to the ocean. The model could be utilized for a variety of studies in $CO_2$ policy and management, climate modeling, $CO_2$ impacts, and crop models.

  • PDF

Organic Matters Budget and Movement Characteristic in Lake Hoengseong (횡성호의 유기물 수지 및 거동 특성)

  • Joung, Seung-Hyun;Park, Hae-Kyung;Yun, Seok-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2012
  • Organic matters budget in Lake Hoengseong were monthly investigated from April 2009 to November 2009. The intense rainfall occurred at between July and August and the hydrological factors were highly varied during the rainfall season. By the concentrated rainfall, the elevation, influx and efflux were sharply increased and the turbid water was also flowed into the middle water column in Lake. The inflow of turbid water increased the nutrient concentrations in water body and this appears to stimulate of phytoplankton regard as the primary productivity of influx of organic matter. Monthly average concentration of dissolved organic carbon (DOC) was generally higher than the particulate organic carbon (POC) concentration in Lake, but Temporal and spatial variation of POC concentration was higher than DOC and the maximum POC concentration was recorded in surface water in August, had the highest phytoplankton biomass. Organic carbon concentration in inflow site was rarely changed during the dry season, but the concentration was rapidly increased by the initial intense rainfall. In organic matters budget, the most of the organic matters was inflowed from the inflow site at rainfall season. Especially, the influx of allochthonous organic matters during the intense rainfall was 72.4% in the total influx organic matters.

Global Carbon Budget Study using Global Carbon Cycle Model (탄소순환모델을 이용한 지구 규모의 탄소 수지 연구)

  • Kwon, O-Yul;Jung, Jaehyung
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1169-1178
    • /
    • 2018
  • Two man-made carbon emissions, fossil fuel emissions and land use emissions, have been perturbing naturally occurring global carbon cycle. These emitted carbons will eventually be deposited into the atmosphere, the terrestrial biosphere, the soil, and the ocean. In this study, Simple Global Carbon Model (SGCM) was used to simulate global carbon cycle and to estimate global carbon budget. For the model input, fossil fuel emissions and land use emissions were taken from the literature. Unlike fossil fuel use, land use emissions were highly uncertain. Therefore land use emission inputs were adjusted within an uncertainty range suggested in the literature. Simulated atmospheric $CO_2$ concentrations were well fitted to observations with a standard error of 0.06 ppm. Moreover, simulated carbon budgets in the ocean and terrestrial biosphere were shown to be reasonable compared to the literature values, which have considerable uncertainties. Simulation results show that with increasing fossil fuel emissions, the ratios of carbon partitioning to the atmosphere and the terrestrial biosphere have increased from 42% and 24% in the year 1958 to 50% and 30% in the year 2016 respectively, while that to the ocean has decreased from 34% in the year 1958 to 20% in the year 2016. This finding indicates that if the current emission trend continues, the atmospheric carbon partitioning ratio might be continuously increasing and thereby the atmospheric $CO_2$ concentrations might be increasing much faster. Among the total emissions of 399 gigatons of carbon (GtC) from fossil fuel use and land use during the simulation period (between 1960 and 2016), 189 GtC were reallocated to the atmosphere (47%), 107 GtC to the terrestrial biosphere (27%), and 103GtC to the ocean (26%). The net terrestrial biospheric carbon accumulation (terrestrial biospheric allocations minus land use emissions) showed positive 46 GtC. In other words, the terrestrial biosphere has been accumulating carbon, although land use emission has been depleting carbon in the terrestrial biosphere.

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

Budget and distribution of organic carbon in Taxus cuspidata forest in subalpine zone of Mt. Halla

  • Jang, Rae-Ha;Jeong, Heon-Mo;Lee, Eung-Pill;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Background: In order to investigate organic carbon distribution, carbon budget, and cycling of the subalpine forest, we studied biomass, organic carbon distribution, litter production, forest floor litter, accumulated soil organic carbon, and soil respiration in Taxus cuspidata forest in Halla National Park from February 2012 to November 2013. Biomass was calculated by using allometric equation and the value was converted to $CO_2$ stocks. Results: The amount of plant organic carbon was $13.60ton\;C\;ha^{-1}year^{-1}$ in 2012 and $14.29ton\;C\;ha^{-1}year^{-1}$ in 2013. And average organic carbon introduced to forest floor through litter production was $0.71ton\;C\;ha^{-1}year^{-1}$. Organic carbon distributed in forest floor litter layer was $0.73ton\;C\;ha^{-1}year^{-1}$ on average and accumulated organic carbon in soil was $51.13ton\;C\;ha^{-1}year^{-1}$ on average. In 2012, Amount of released $CO_2$ from soil to atmosphere was 10.93 ton $CO_2ha^{-1}year^{-1}$. Conclusions: The net ecosystem production based on the difference between net primary production of organic carbon and soil respiration was $-1.74ton\;C\;ha^{-1}year^{-1}$ releasing more carbon than it absorbed.

Carbon Budget and Network Analysis of a Surf Zone Ecosystem by NETWRK (NETWRK을 이용한 쇄파대 생태계의 탄소수지와 네트웍 해석)

  • KANG Yun Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • A carbon budget model was constructed and analyzed for the Bangjukpo surf zone ecosystem in southern Korea by using the NETWRK. The model consists of 11 living and 1 non-living groups. Using boxes and arrows, a topological map was created to depict biomasses of each group and exchange rates between them. The system includes primary producers of phytoplankton and benthic algae, primary consumers of particle feeding zooplankton, carnivorous zooplankton, meiobenthos, malacostracans and bivalves, and top consumers of detrivorous, omnivorous, carnivorous and piscivorous fishes. The surf zone ecosystem was analyzed by means of network analysis, showing total system throughput of $574\;gCm^{-2}yr^{-1},$ development capacity of $1,876\;gCm^{-2}yr^{-1},$ ascendancy value of $768\;gCm^{-2}yr^{-1},$ Finn cycling index of $4.4\%$ and internal relative ascendancy of $27\%.$ These results were compared with similar data from other systems.

Organic Carbon Distribution and Budget in the Quercus variabilis Forest in the Youngha valley of Worak National Park (월악산 용하계곡 굴참나무림의 유기탄소 분포 및 수지)

  • NamGung, Jeong;Choi, Hyeon-Jin;Han, A-Reum;Mun, Hyeong-Tae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.170-176
    • /
    • 2008
  • Organic carbon distribution and carbon budget of a Quercus variabilis forest in the Youngha valley of Mt. Worak National Park were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from 2005 through 2006. For the estimation of carbon budget, soil respiration was measured. The amount of carbon allocated to above- and below-ground biomass was 56.22 and 13.90 ton C ha$^{-1}$. Amount of organic carbon in annual litterfall was 2.33 ton C ha$^{-1}$ yr$^{-1}$. Amount of soil organic carbon within 50 cm soil depth was 119.14 ton C ha$^{-1}$ 50 cm-depth$^{-1}$. Total amount of organic carbon in this Q. variabilis forest was 193.96 ton C ha$^{-1}$. Of these, 61.43% of organic carbon was allocated in the soil. Net increase of organic carbon in above- and below-ground biomass in this Q. variabilis forest was estimated to 7.68 ton C ha$^{-1}$ yr$^{-1}$. The amount of carbon evolved through soil respiration was 6.21 ton C ha$^{-1}$ yr$^{-1}$. Net amount of 1.47 ton C ha$^{-1}$ yr$^{-1}$ was absorbed from the atmosphere by this Q. variabilis forest.

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.