• Title/Summary/Keyword: Soil Improvement

Search Result 1,327, Processing Time 0.032 seconds

Remediation Design Using Soil Washing and Soil Improvement Method for As Contaminated Soils and Stream Deposits Around an Abandoned Mine (토양 세척법과 석회를 첨가한 토양 안정화 공법을 이용한 폐광산 주변 비소 오염 토양 및 하천 퇴적토 복원)

  • 이민희;이정산;차종철;최정찬;이정민
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.121-131
    • /
    • 2004
  • Removal efficiencies of soil washing and soil improvement processes to remediate farmland soils and stream deposits around Goro abandoned mine were investigated with batch and column experiments. For As-contaminated farm-land soils around Goro mine, batch tests to quantify As extraction rate from contaminated soils and lime treated contaminated soils were performed. The contaminated soil mixed with lime decreased As extraction rate less than one fourth, suggesting that the soil improvement method mixed with lime dramatically decrease As extraction rate. A storage dam will be constructed in the lower part of the main stream connected to Goro abandoned mine and the amount of As extracted from the bottom soils of reservoir could be the main source to contaminate water of reservoir. The decrease of As extraction amount from the bottom in reservoir, caused by the application of the soil improvement method was investigated from the physically simulated column experiment and results showed that As extraction rate decreased to one forty when 1% lime mixed soil improvement was applied to contaminated soils. For contaminated stream deposits connected Goro mine, the removal efficiency of the soil washing method was investigated with batch experiments. Hydrochloric acid, citric acid, acetic acid and distilled water were used as soil washing solution and 0.01, 0.05, 0.1, 0.5, 1.0 N of washing solution were applied to extract As. When washing with 0.05 N of hydrochloric acid or citric acid, more than 99.9% of As was removed from stream deposits, suggesting that As contaminated stream deposits around Goro mine be successfully remediated with the soil washing process. Total volumes of contaminated soils and deposits needed for remediation were calculated based on three different reme-diation target concentrations and the operation cost of soil washing for calculated soil volumes was estimated. Results from this research could be directly used to make a comprehensive countermeasure to remediate contaminated area around Goro mine and also many contaminated areas similar to this research area.

The Improvement Effect of Pinus densiflora Forest Disturbed by Human Trampling in the Solbat Neighborhood Park, Gangbuk-gu, Seoul (서울시 강북구 솔밭근린공원 소나무림 답압 피해 개선사업 효과 연구)

  • Kwon, Ki-Young;Han, Bong-Ho;Park, Seok-Cheol;Choi, Jin-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.148-159
    • /
    • 2012
  • The purpose of this study is to validate the effect of improvement such measures as fence installation or planting of bush and herbaceous plants taken from Pinus densiflora forest in Solbat Neighborhood Park in Seoul, which was damaged by stamping. The study was conducted in 2005 and 2010 in order to analyze changes in planting types, planting structure of Pinus densiflora forest, soil hardness, cross-sectional structure of soil, and physicochemical characteristics of soil. It was also measured by the growth of the branches and the diameter of Pinus densiflora, comparing before and after the improvement to study the effect of restoring Pinus densiflora forest damaged by stamping. When it comes to a change in planting type, Pinus densiflora forest without underlay was reduced from 48.5% in 2005 to 6.8% in 2010. Pinus densiflora forest with bush and herbaceous plants was increased dramatically from 7.4% to 46.8%. Regarding planting structure, in most area of the subject site, Pinus densiflora forest without under layer was transformed into the one with bush and herbaceous plants including Rhododendron mucronulatum, Rhododendron schippenbachii, Hemerocallis fulva, Aceriphyllum rossii, Hosta plantaginea growing in a wide area. The soil in the Solbat Neighborhood Park was very stiff with soil hardness of $54.8kg/cm^2$ in average. After the improvement efforts made in the Park in 2010, the soil hardness was mostly less than $4kg/cm^2$, being in a good condition with little influence on the growth of plants. When it comes to the cross-sectional structure of soil, litter layer didn't exist in 2005 because of stamping and the organic matter layer was only 1.0cm thick, which provided an unfavorable condition for plant growth. However, after improvement, litter layer was formed up to 3.0cm and thickness of the organic matter layer also went up to 1.5~8.0cm in 2010 because the damage from stamping was reduced. Concerning the physicochemical characteristic of soil, in 2005 soil showed pH 5.76~6.70, organic matter content 7.15~10.55%, and available phosphorus 9.38~26.47mg/kg, having no big problems as a soil environment for growth of Pinus densiflora. 15 trees of Pinus densiflora were selected to see branch growth and it was found that the branches tended to grow better after improvement. 70 trees of Pinus densiflora from various grades of soil hardness also were selected to identify changes of diameter growth. In most cases, it was analyzed that Pinus densiflora grew better after improvement. After conducting this study, it was validated that such measures as fence installation or planting of bush and herbaceous plants to restore Pinus densiflora Forest damaged by stamping were effective in improving growth of Pinus densiflora.

A Study on the Shallow Improvement Method for Dredged Clay Fills by the Model Tests (모형시험에 의한 준설점토지반의 표층안정기법 연구)

  • 김석열;노종구;이영철;권수영;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.569-576
    • /
    • 2002
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, to compare the soil and sand-mat mixed method with sand-air jet method for shallow improvement of hydraulic fills at southern seashore, the model tests were performed. Through the model test results, the behavior of surface as disturbance of desiccation crust is analyzed.

  • PDF

The Reality and Problem of Soft Ground Improvement Construction (연약지반 개량 시공의 실제와 문제점)

  • Choi, Gwi-Bong;Hwang, Soung-Won;Kim, Jong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.672-679
    • /
    • 2008
  • During recent years, the large soft ground improvements very rapidly increase with industrial development and it is the types and scales of structure that is enlarged by degree. Then, we must enter construct equipment to improve soft ground and we fulfilled works by carrying out soft clay soil to gain trafficability for them. For improving the soft ground, we lay geotextile on soft clay ground and fill the filter sand that can drain the pore water. Then, we landfill cover soil for come by trafficability of construction tools. Ater that we penetrate vertical drain for dehydration through soft ground. there are very complicated works. For these reason we suggest the methods of soft ground improvement constructions.

  • PDF

Improvement of Shallow Soil Using Electric Heating Equipment (전기가열장치를 이용한 표층지반개량)

  • Park, Min-Cheol;Im, Eun-Sang;Shin, Beck-Chul;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.41-54
    • /
    • 2012
  • This paper is to develop the method of surface soil improvement by electric heating equipment. For this purpose, the electric heating systems were invented to apply to the in-situ soil. Iaboratory tests were done to study the behaviors of sea clays by eletric heating. In lab tests, two different heating temperatures, $70^{\circ}C$ and $110^{\circ}C$, were applied to the saturated clays to examine the relationship between evaporation and compaction. In addition, trafficability was analyzed to the heated by applying cone penetrometer to the heated clays Furthermore, in-situ tests were conducted to analyze the range of soil improvement and strength variations. The temperature changes in field were measured and they were compared with those of the commercial program (Temp/W). Also, the bearing capacities of electrically heated field were tested by PBT (plate bearing test). Several conclusions were derived from the results of the numerical analysis and tests (lab and field). The improvement ranges and strength variations of electrically heated soil depended on the heating temperature and time. If the heating temperature is more than $100^{\circ}C$ evaporating the ground water, the bearing capacity and settlement increased rapidly. The bearing capacities of in-situ soil increased more than 3 times, and heated soil emitted a lot of vapors. The soil around electric heater was sintered completely, and its range was almost 20 cm.

Improvement of Soil-Cement with additives (첨가제에 의한 Soil-Cement의 성질 개량)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-77
    • /
    • 1979
  • Six kinds of weathered granite soils whose degree of weathering and mineral compo- sitions are different, were tested in order to improve the soil-cement. by performing compression test, durability (freezing-thawing) test and mesurement of shrinkage are made. From result of the tests as mentioned above, the following conclusions are drawn. The unconfined compressive strength of seondary additives containing soil-cement mixtures and their resistance against freezeing-thawing are more increased and shrinkage is more decreased than soil-cement mixtures only in case opitimun quantity of additives are added to soil-cement mixtures, and according as types of soils.

  • PDF

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped land VI. Relationship between annual change of soil phsico-chemical properties and yield of silage corn (신개간경사지 토양개량과 작물생육에 관한 연구 VI. 토양의 물리화학성 년차간 변화가 옥수수 청예수량에 미치는 영향)

  • 허봉구;김무성
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • This study was experimented to obtain the basic information on the changeable aspect and improvement of soil fertility in newly-reclaimed sloped land. Silage corn was cultivated under the six different treatments for 4 years. The relation between the amount or ratio of annual changes of soil physico-chemical properties and yield of silage corn were analyzed. Soil bulk density was decreased in 3rd year at topsoil, but that decreased in 4th year at subsoil. Soil organic matter also decreased in 2nd year at topsoil, and decreased continuously at subsoil. Bulk density and hardness of soil depths showed significant negative simple correlation with dry matter yield and cation exchange capacity showed positive. Correlation coefficient of chemical properties with dry matter yield were low. The range of annual changes of moisture percent, hardness and organic matter were wider than the other properties. The significantly different of physical properties were higher than the chemical properties, and those of topsoil were higher than subsoil. According to multiple regression between yield and physico-chemical properties of subsoil, bulk density and cation exchange capacity were in the greatest contribution at the variations, but bulk density was greatest at the ratios.

  • PDF

Effects of Super Absorbent Polymer on the Growth of Vine Plants (고흡수성 합성고분자가 덩굴성 식물의 생육에 미치는 영향 분석)

  • Kim, Jeong-Ho;Oh, Deuk-Kyun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.801-810
    • /
    • 2013
  • To improve the physical and chemical properties of the soil and increasing water-retaining property of the soil, Superabsorbent synthetic polymeric materials have been used. The experiment carried out from April to July 2012 after the influence evaluation of Superabsorbent synthetic polymeric materials to vines plant. The result shows that the study of Hedera japonica Tobler, the growth and the survival rates rank as media > hydroponic > superabsorbent synthetic polymers, and the growth and the survival rates are considerably pessimistic in the experiment of hydroponic and superabsorbent synthetic polymers. In the study of Trachelospermum asiaticum var. intermedium, the growth and the survival rates rank as hydroponic > media > superabsorbent synthetic polymers, the difference between the experiment of hydroponic and is very small and the survival rates are not very good in the experiment of superabsorbent synthetic polymers. In the study of Euonymus fortunei var. radicans Rehder,it is insignificantly difference among the different of planting based. Judging from these results, the differences are depending on the species of plants. The thesis holds that the characteristics of plant should be considered in plant cultivation and soil improvement in the future, and it is desirable to use the appropriate mixing ratio of soil in soil improvement as well.

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Compressive and tensile strength enhancement of soft soils using nanocarbons

  • Taha, Mohd R.;Alsharef, Jamal M.A.;Khan, Tanveer A.;Aziz, Mubashir;Gaber, Maryam
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Technological innovations in sustainable materials for soil improvement have attracted considerable interest due to energy crisis and environmental concerns in recent years. This study presents results of a comprehensive investigation on utilization of nanocarbons in reinforcement of a residual soil mixed with 0, 10 and 20% bentonite. Effects of adding proportionate quantities (0, 0.05, 0.075, 0.1 and 0.2%) of carbon nanotubes and carbon nanofibers to soil samples of different plasticities were evaluated. The investigation revealed that the inclusion of nanocarbons into the soil samples significantly improved unconfined compressive strength, Young's modulus and indirect tensile strength. It was observed that carbon nanofibers showed better performance as compared to carbon nanotubes. The nanosized diameter and high aspect ratio of nanocarbons make it possible to distribute the reinforcing materials on a much smaller scale and bridge the inter-particles voids. As a result, a better 'soil-reinforcing material' interaction is achieved and desired properties of the soil are improved at nanolevel.