• Title/Summary/Keyword: Soil Geography

Search Result 161, Processing Time 0.026 seconds

Analysis of Influence Factors of Forest Soil Sediment Disaster Using Aerial Photographs - Case Study of Pyeongchang-county in Gangwon-province - (항공사진을 이용한 산지토사재해 영향인자 분석 - 강원도 평창군을 중심으로 -)

  • Woo, Choong-Shik;Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.1
    • /
    • pp.14-22
    • /
    • 2008
  • The forest soil sediment disasters occurred in Jinbu-myeon Pyeongchang county were investigated characteristics by the aerial photograph analysis. After digitizing from aerial photographs, forest soil sediment disaster sites were classified into 695 collapsed sites, 305 flowed sites and 199 sediment sites. DEM (Digital Elevation Model) were generated from 1 : 5,000 digital topographic map. Factors of geography, hydrology, biology, and geology were analyzed using DEM, geologic map, and forest stand map with aerial photographs by GIS spatial analysis technique. The forest soil sediment disasters were mainly occurred from southeastern slope to southwestern slope. In collapsed sit es, the average slope degree is $28.9^{\circ}$, the average flow length is 163.5m, the average area of drainage basin is 897$m^2$. In case of flowed sites, the average slope degree, flow length, the area of drainage basin and confluence order is $27.0^{\circ}$, 175m, 2,500$m^2$ and 1, respectively. In sediment sites, the average slope, flow length, the area of drainage basin and confluence order is $12.5^{\circ}$, 2,50m, 25,000$m^2$ and 4, respectively. Also the forest soil sediment disasters were occurred most of collapsed sites in the afforest land after felling and igneous rocks composed of granite.

Soil Compaction of Hiking Trails Induced by Human Trampling in Mt. Halla and Darangshiorum (한라산과 다랑쉬오름 등산로의 답압에 의한 토양 압밀현상)

  • Kim, Tae-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.2
    • /
    • pp.169-179
    • /
    • 2003
  • The hardness and physical properties of soils were measured in hiking trails of Mt. Halla and Darangshiorum in Jeju Island to examine the characteristics and formative factors of an aquiclude induced by human trampling. The soil hardness, being generally the highest on trails, decreases outward and shows the lowest on adjacent slopes in a natural condition. The bulk density and solid phase also demonstrates a similar tendency, then implying that the aquiclude occurs in the central part of trails. Although the formation of a hard layer in trails is fundamentally attributed to human trampling, the environmental factors such as landform, lithology, soil and vegetation play a role in the occurrence of the aquiclude. Soil compaction varies with the gradient and location of trails which affects a transport and deposition of soil particles to produce a hard layer. Soil compaction also depends on the physical properties of soils including the soil texture largely affected by lithology. Vegetation is not directly related with the formation of a hard layer, but affects its dimensions through an enlargement rate of bare trails depending on the response and resistance of plants to human trampling.

  • PDF

The Environmental Change of Korea based on the Isopollen Map during the Holocene

  • Yoon, Soon-Ock
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.2
    • /
    • pp.6-11
    • /
    • 2008
  • Vegetation change reconstructed by pollen analysis is effective to clarify natural conditions such as climate and soil as well as intensity of human activity. Pollen analysis in Korea is difficult to obtain peaty soil sedimented by low relief geomorphollogically and formation age is usually confined to obtain information during young Holocene as well as little absolute age data. Isopollen map was constructed in order to analyze the change of vegetation environment time-spatially during Holocene based on the 30 data with age dated from 78 results from pollen analysis in Korea. The indicatives for vegetation environment were the main trees in Korea such as Alnus, Pinus, Quercus and AP/NAP during the periods of 6,000 y.BP, 4,000 y.BP, 3,000 y.BP, 2,000 y.BP, 1,000 y.BP. As a result, the regional time-spatial patterns of vegetation distribution appeared clearly on the isopollen map. The dominant vegetation stage was repeated in the different pattern e.g. the dominance between Alnus and Quercus at West Coast and between Pinus and Quercus at East Coast competitively.

  • PDF

Water chemistry controlled by drainage basin: Case study in the Han River, South Korea

  • Ryu Jong-Sik;Lee Gwang-Sik;Sin Hyeong-Seon;An Gyu-Hong;Jang Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.405-407
    • /
    • 2005
  • To evaluate the main hydrogeochemical characteristics, river waters are investigated using element리 and isotopic compositions in South Korea. In this area, the chemical compositions are mostly classified into three groups; $Ca^{2+}-{HCO_3}^-$ type, $Ca^{2+}-Cl^{-}-{NO_3}^-$ type and $Ca^{2+}-{HCO_3}^{-}-Cl^{-}-{NO_3}^-$ type. These types are affected by two major factors: water-rock interaction and anthropogenic inputs such as sewage and fertilizers. Based on the values of ${\delta}^{18}O$ and ${\delta}D$, most of waters are originated from precipitation except two samples contaminated. The lithology and geography of basins mainly control the water chemistry. Elemental and isotopic compositions show that water chemistry are mainly controlled by three end members, especially by carbonate dissolution, and suggest that anthropogenic input affect the water chemistry. Also, three weathering sources are identified: silicates, dolomite and limestone.

  • PDF

The Background of the Formation of the Elevated Water Storage Tank Landscape in the Western Region of Jeju Island (제주도 서부 지역 고가수조 경관의 형성배경)

  • Kim, Man-Kyu;Park, Jong-Chul;Lee, Seong-Woo
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.6
    • /
    • pp.623-634
    • /
    • 2010
  • The elevated water storage tanks highly crowded in the western region in Jeju island is an important landmark of Jeju island. This study examines the reasons that the elevated water storage tanks appeared in a high density. After examination, this study found that the elevated water storage tanks formed under the influences of climate, hydrogeologic structure, soil, topography and land use. In particular, the elevated water storage tanks in Jeju are closely related to the crapping system with which water has to be supplied using sprinkler due to well drained soil and hydrogeological characteristics. The results of this study show that elevated water storage tank landscape in the western region of Jeju island is an agricultural landscape particularly made in the course of farmers' adaptation to the natural environment of Jeju island.

  • PDF

The Influence of the Infinitive Flow Direction Algorithm and Horn Slope Algorithm on the Topographic Index and Hydrological Responses of the TOPMODEL (무한 유향 알고리듬과 Horn 경사 알고리듬이 TOPMODEL 지형지수와 수문반응에 미치는 영향)

  • Byun, Jong-Min;Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.3
    • /
    • pp.207-223
    • /
    • 2009
  • The TOPMODEL Topographic Index (TI) is widely used to predict the spatial distribution of soil moisture contents, The TI is one of terrain indices which are frequently used in spatially distributed environmental modelings. There have been studies on the evaluation and improvement of the TI. Most of them. however, have focused on only the modified multiple flow direction algorithm and algorithms for slope calculation have been paid little attention, In this research, we attempted to improve the TI by utilizing the infinitive flow direction (Dinf) algorithm and Horn slope algorithm. Then we attempt to analyze and evaluate the influence of the improved TI on hydrological responses of the TOPMODEL As a result. our approaching using the infinitive flow direction (Dinf) and Horn slope algorithm made the TI better than the multiple flow direction (MD8) - the multiple descent slope (MDS) algorithm. However, the model efficiency of discharges at the outlet was not increased. Our research may provide an insight to choose appropriate algorithms for calculating flow direction and slope in spatially distributed environmental modelings.

Distribution of Vegetation and Geomorphology Characteristics of the Water Spider(Argyroneta aquatica) Habitat in the Jeongok Lava Plateau, Central Korea (전곡 용암대지 물거미 서식지의 지형특성과 식생 분포)

  • Lee, Min Boo;Lee, Sang Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.4
    • /
    • pp.57-73
    • /
    • 2017
  • The formation of the lava dam of the paleo lake blocked the entrance to the Chatancheon River on the Jeongok lava plateau and it suddenly transformed the terrestrial ecosystem into the aquatic one by the overflow. The spiders in the lava dam adapted in the wetland and evolved into water spiders that could survive by forming bubble houses. Since then, the lava dam was connected to the present Hantangang River due to the dissection and the lake became a terrestrial environment, a small area of marsh composed of primarily clay soil layer. Change in water level of the habitat and thus the extension of the terrestrial area made the species a endangered now. This study carried out frequency of occurrence, degree of wetness and plant habitats of the vascular plant in the water spider habitat. As a result of this study, total 180taxa are of 55 (30.6%) wetland plant groups and of 113 (62.8%) upland plant groups except facultative plant groups. Among the wetland plant groups, the Isachne globosa community occupied the largest area, where the water spiders were most observed. The result of this study, the classification and the types of vascular plant species, would provide useful information for the sustaining healthy wetland ecosystem and the restoration of the habitat for the water spiders.

Extraction of the Talus Distribution Potential Area Using the Spatial Statistical Techniques - Focusing on the Weight of Evidence Model - (공간통계기법을 이용한 애추 분포 가능지역 추출 - Weight of evidence 기법을 중심으로 -)

  • Yu, Jaejin;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.133-147
    • /
    • 2014
  • Reducing the range of target landform, is required to save the time and cost before real field survey in the case of inaccessible landform such as talus. In this study, Weight of Evidence modeling, which is a Target-driven spatial analysis statistics methods, has been applied to reduce the field survey range of target landform. In order to apply the Weight of Evidence analysis, a likelihood ratio was calculated on the basis of the result of correlation analysis between geomorphic factors and GIS information after selection of geomorphic factors regarding talus. A best combination, which has the biggest possibility for Talus Potential Index, was found by using SRC and AUC methods after calculating the number of cases for each thematic maps. This combination which includes aspect, geology, slope, land-cover, soil depth and soil drainage factors, showed quite high accuracy by 74.47% indicating the ratio of real existent talus to potential talus distribution.

Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model (베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가)

  • Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.

Mapping Landslide Susceptibility Based on Spatial Prediction Modeling Approach and Quality Assessment (공간예측모형에 기반한 산사태 취약성 지도 작성과 품질 평가)

  • Al, Mamun;Park, Hyun-Su;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.53-67
    • /
    • 2019
  • The purpose of this study is to identify the quality of landslide susceptibility in a landslide-prone area (Jinbu-myeon, Gangwon-do, South Korea) by spatial prediction modeling approach and compare the results obtained. For this goal, a landslide inventory map was prepared mainly based on past historical information and aerial photographs analysis (Daum Map, 2008), as well as some field observation. Altogether, 550 landslides were counted at the whole study area. Among them, 182 landslides are debris flow and each group of landslides was constructed in the inventory map separately. Then, the landslide inventory was randomly selected through Excel; 50% landslide was used for model analysis and the remaining 50% was used for validation purpose. Total 12 contributing factors, such as slope, aspect, curvature, topographic wetness index (TWI), elevation, forest type, forest timber diameter, forest crown density, geology, landuse, soil depth, and soil drainage were used in the analysis. Moreover, to find out the co-relation between landslide causative factors and incidents landslide, pixels were divided into several classes and frequency ratio for individual class was extracted. Eventually, six landslide susceptibility maps were constructed using the Bayesian Predictive Discriminant (BPD), Empirical Likelihood Ratio (ELR), and Linear Regression Method (LRM) models based on different category dada. Finally, in the cross validation process, landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract success rate curve. The result showed that Bayesian, likelihood and linear models were of 85.52%, 85.23%, and 83.49% accuracy respectively for total data. Subsequently, in the category of debris flow landslide, results are little better compare with total data and its contained 86.33%, 85.53% and 84.17% accuracy. It means all three models were reasonable methods for landslide susceptibility analysis. The models have proved to produce reliable predictions for regional spatial planning or land-use planning.