The Influence of the Infinitive Flow Direction Algorithm and Horn Slope Algorithm on the Topographic Index and Hydrological Responses of the TOPMODEL

무한 유향 알고리듬과 Horn 경사 알고리듬이 TOPMODEL 지형지수와 수문반응에 미치는 영향

  • Byun, Jong-Min (Department of Geography Education, Seoul National University) ;
  • Kim, Jong-Wook (Department of Geography Education, Seoul National University)
  • Published : 2009.06.30

Abstract

The TOPMODEL Topographic Index (TI) is widely used to predict the spatial distribution of soil moisture contents, The TI is one of terrain indices which are frequently used in spatially distributed environmental modelings. There have been studies on the evaluation and improvement of the TI. Most of them. however, have focused on only the modified multiple flow direction algorithm and algorithms for slope calculation have been paid little attention, In this research, we attempted to improve the TI by utilizing the infinitive flow direction (Dinf) algorithm and Horn slope algorithm. Then we attempt to analyze and evaluate the influence of the improved TI on hydrological responses of the TOPMODEL As a result. our approaching using the infinitive flow direction (Dinf) and Horn slope algorithm made the TI better than the multiple flow direction (MD8) - the multiple descent slope (MDS) algorithm. However, the model efficiency of discharges at the outlet was not increased. Our research may provide an insight to choose appropriate algorithms for calculating flow direction and slope in spatially distributed environmental modelings.

토양수분의 공간적인 분포를 예측하는 TOPMODEL 지형지수는 지형특성을 기반으로 하는 분포형 환경연구에서 빈번히 활용되는 지형 인자이다. 지형지수에 대한 평가 및 개선은 최근까지도 활발하지만, 대부분은 수정된 다중 유향 알고리듬을 이용한 것들이고, 경사 알고리듬을 이용한 경우는 상대적으로 미흡하다. 본 연구에서는 무한 유향(Dinf) 알고리듬과 Horn 경사 알고리듬을 이용하여 지형지수를 개선하고, 이를 TOPMODEL에 적용하여 모의 수문반응에 대한 영향을 분석하고 평가했다. 연구결과 무한 유향(Dinf) 알고리듬과 Horn 경사 알고리듬을 이용할 경우, 기존 다중 유향(MD8) - 다중 경사(MDS) 알고리듬에 비해 토양수분의 공간적 분포에 보다 근접한 지형지수를 만들 수 있었다. 그러나 최종 유출구의 유출량 모의 효율은 향상되지 않았다. 이 결과는 분포형 환경연구 분야에서 적절한 유향 및 경사 알고리듬을 선택하는데 도움이 될 것이다.

Keywords

References

  1. 김만규·박종철, 2008, '수치표고모형(DEM)의 해상도가 물리 결정 일괄 매개변수 수문모형의 모의 결과에 미치는 영향 평가,'한국지리정보학회지, 11(3), 151-165
  2. 김상현, 1999, 'TOPMODEL의이해,' 한국수자원학회지, 32(2), 30-33
  3. 김상현.이지영, 1999,' 개선된 지형지수 산정 알고리듬의 적용에 관한 연구,'한국수자원학회논문집, 32(4), 489-499
  4. 김상현·김경현, 1999,' 공간적 포화면적의 공간적 연결을 고려한 TOPMODEL의 개선과 적용,'한국수자원학회논문집, 32(5), 515-524
  5. 박수진·유근배, 2004,' 지형학적 공간구조의 해석을 위한 DEM의 최적격자 선정에 관한 연구,'한국지형학회지, 11(3), 113-136
  6. 이지영·김상현, 2000, '지형적 특성을 고려한 지형지수산정 알고리듬에 관한 연구,'한국수자원학회논문집, 33(3), 279-288
  7. Beven, K. J. and Kirkby, M. J., 1979, A physically based, variable contributing area model of basin hydrology, Hydrological Sciences Bulletin, 24(1), 43-69 https://doi.org/10.1080/02626667909491834
  8. Beven, K., Lamb, R., Quinn, P., Romanowicz, R., and Freer, J., 1995, TOPMODEL, in Singh, V. P.(ed.), Computer models of watershed hydrology,Highlands Ranch, Colorado, 627-668
  9. Dirnbock, T., Hobbs, R. J., Lambeck, R. J., and Caccetta, P. A., 2002, Vegetation distribution in relation to topographically driven processes in southwestern Australia, Applied Vegetation Science, 5(1), 147-158 https://doi.org/10.1111/j.1654-109X.2002.tb00544.x
  10. Famiglietti, J. S., Rudnicki, J. W., and Rodell, M., 1998, Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas, Journal of Hydrology, 210(1-4), 259-281 https://doi.org/10.1016/S0022-1694(98)00187-5
  11. Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G., 1997, Preferred states in spatial soil moisture patterns: Local and nonlocal controls,Water Resources Research, 33(12), 2897-2908 https://doi.org/10.1029/97WR02174
  12. Guntner, A., Seibert, J., and Uhlenbrook, S., 2004, Modeling spatial patterns of saturated areas: An evaluation of different terrain indices, Water Resources Research, 40, W05114, doi:10.1029/2003WR002864
  13. Horn, B. K. P., 1981, Hill shading and the reflectance map, Proceedings of the IEEE, 69(1), 14-47 https://doi.org/10.1109/PROC.1981.11918
  14. Isard, S. A., 1986, Factors influencing soil moisture and plant community distributions on Niwot Ridge, Front Range, Colorado, USA, Arctic & Alpine Research, 18(1), 83-96 https://doi.org/10.2307/1551216
  15. Jones, K. H., 1998, A comparison of algorithms used to compute hill slope as a property of the DEM, Computers and Geosciences, 24(4), 315-323 https://doi.org/10.1016/S0098-3004(98)00032-6
  16. Marich, A., Batterson, M., and Bell, T., 2005, The morphology and sedimentological analyses of Rogen moraines, central Avalon Peninsula, Newfoundland, in Current Research, Newfoundland and Labrador Department of Natural Resources, Report 05-1, 1-14
  17. Nash, J. E. and Sutcliffe, J. V., 1970, River flow forecasting through conceptual models part I -A discussion of principles, Journal of Hydrology, 10(3), 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  18. O’Callaghan, J. F. and Mark, D. M., 1984, Extraction of drainage networks from digital elevation data, Computer vision, graphics, and image processing, 28(3), 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  19. Quinn, P., Beven, K., Chevallier, P., and Planchon, O., 1991, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models, Hydrological Processes, 5(1), 59-79 https://doi.org/10.1002/hyp.3360050106
  20. Seibert, J. and McGlynn, B. L., 2007, A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models, Water Resources Research, 43, W04501, doi:10.1029/2006WR005128
  21. Sorensen, R., Zinko, U., and Seibert, J., 2006, On the calculation of the topographic wetness index: Evaluation of different methods based on field observations, Hydrology and Earth System Sciences, 10(1), 101-112 https://doi.org/10.5194/hess-10-101-2006
  22. Tarboton, D. G., 1997, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33(2), 309-319 https://doi.org/10.1029/96WR03137
  23. Warren, S. D., Hohmann, M. G., Auerswald, K., and Mitasova, H., 2004, An evaluation of methods to determine slope using digital elevation data, Catena, 58(3), 215-233 https://doi.org/10.1016/j.catena.2004.05.001
  24. Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., and McMahon, T. A., 1999, Observed spatial organization of soil moisture and its relation to terrain indices, Water Resources Research, 35(3), 797-810 https://doi.org/10.1029/1998WR900065
  25. Wolock, D. M. and McCabe Jr, G. J., 1995, Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL, Water Resources Research, 31(5), 1315-1324 https://doi.org/10.1029/95WR00471
  26. http://www.wamis.go.kr
  27. http://local.daum.net/map/index.jsp?t_nil_bestservice=map
  28. http://egis.me.go.kr/egis/intro.asp