• Title/Summary/Keyword: Soil Extracts

Search Result 198, Processing Time 0.025 seconds

Behaviour of the Soil Residues of the Acaricide-Insecticide, [$^{14}C$]Acrinathrin;I. Behaviour during Crop(Maize) Cultivation (살비살충제 [$^{14}C$Acrinathrin 토양 잔류물의 행적 규명;I. 농작물(옥수수) 재배시의 행적)

  • Lee, Jae-Koo;Kyung, Kee-Sung;Kwon, Jeong-Wook;Ahn, Ki-Chang;Jung, In-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.186-201
    • /
    • 1995
  • In order to elucidate the fate of the residues of the pyrethroid acaricide-insecticide, acrinathrin in soil, maize plants were grown for one month on the specially-made pots filled with two different types of soils containing fresh and one-month-aged residues of [$^{14}C$]acrinathrin, respectively. The mineralization of [$^{14}C$]acrinathrin to $^{14}CO_2$ during the one-month period of aging and of maize cultivation amounted to $23{\sim}24%$ and $24{\sim}33%$, respectively, of the original $^{14}C$ activities. At harvest after one-month growing, the shoots and roots contained less than 0.1% and 1% of the originally applied $^{14}C$ activity, respectively, whereas the $^{14}C$ activity remaining in soil was $65{\sim}80%$ in both soils. Three degradation products with m/z 198(3-phenoxybenzaldehyde), m/z 214(3-phenoxybenzoic acid), and m/z 228(methyl 3-phenoxybenzoate) besides an unknown were identified from acetone extracts of both soils without and with maize plants after treatment of [$^{14}C$]acrinathrin, by autoradiography and GC-MS, and those with m/z 225(3-phenoxybenzaldehyde cyanohydrin) and m/z 198 (3-phenoxybenzaldehyde) from acetone extract of the Soil A treated with 50 ppm acrinathrin and grown with maize plants for 30 days were identified by mass spectrometry. These results suggested that the hydrolytic cleavage of the ester linkage adjacent to the $^{14}C$ with a cyano group, forming 3-phenoxybenzaldehyde cyanohydrin. The removal of hydrogen cyanide therefrom leads to the formation of 3-phenoxybenzaldehyde as one of the major products. The subsequent oxidation of the aldehyde to 3-phenoxybenzoic acid, followed by decarboxylation would evolve $^{14}CO_2$. Solvent extractability of the soils where maize plants were grown for 1 month and/or [$^{14}C$]acrinathrin was aged for 1 month was less than 31% of the original $^{14}C$ activity and over 95% of the total $^{14}C$ activity in soil extracts was distributed in the organic phase. Accordingly, acrinathrin turned out to be degraded rapidly in both soils and be bound to soil constituents as well, not being available to crops.

  • PDF

Toxicity Assessment of Silver Ions Compared to Silver Nanoparticles in Aqueous Solutions and Soils Using Microtox Bioassay (Microtox 생물검정법을 이용한 은 이온과 은 나노입자의 수용액과 토양에서의 독성 비교 평가)

  • Wie, Min-A;Oh, Se-Jin;Kim, Sung-Chul;Kim, Rog-Young;Lee, Sang-Phil;Kim, Won-Il;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1114-1119
    • /
    • 2012
  • This study was conducted to assess the microbial toxicity of ionic silver solution ($Ag^+N$) and silver nanoparticle suspension ($Ag^0NP$) based on the Microtox bioassay. In this test, the light inhibition of luminescent bacteria was measured after 15 and 30 min exposure to aqueous solutions and soils spiked with a dilution series of $Ag^+N$ and $Ag^0NP$. The resulting dose-response curves were used to derive effective concentration (EC25, $EC_{50}$, EC75) and effective dose ($ED_{25}$, $ED_{50}$, $ED_{75}$) that caused a 25, 50 and 75% inhibition of luminescence. In aqueous solutions, $EC_{50}$ value of $Ag^+N$ after 15 min exposure was determined to be < $2mg\;L^{-1}$ and remarkably lower than $EC_{50}$ value of $Ag^0NP$ with $251mg\;L^{-1}$. This revealed that $Ag^+N$ was more toxic to luminescent bacteria than $Ag^0NP$. In soil extracts, however, $ED_{50}$ value of $Ag^+N$ with 196 mg kg-1 was higher than $ED_{50}$ value of $Ag^0NP$ with $104mg\;kg^{-1}$, indicating less toxicity of $Ag^+N$ in soils. The reduced toxicity of $Ag^+N$ in soils can be attributed to a partial adsorption of ionic $Ag^+$ on soil colloids and humic acid as well as a partial formation of insoluble AgCl with NaCl of Microtox diluent. This resulted in lower concentration of active Ag in soil extracts obtained after 1 hour shaking with $Ag^+N$ than that spiked with $Ag^0NP$. With longer exposure time, EC and ED values of both $Ag^+N$ and $Ag^0NP$ decreased, so their toxicity increased. The toxic characteristics of silver nanomaterials were different depending on existing form of Ag ($Ag^+$, $Ag^0$), reaction medium (aqueous solution, soil), and exposure time.

Screening of Herbicidal Activity from Aqueous Extracts of Coronopus didymus (냄새냉이 수용성추출물의 제초활성 탐색)

  • Kim, Tae-Keun;Song, Jin-Young;Kang, Jeong-Hwan;Yang, Young-Hoan;Kim, Hyoun-Chol;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.1
    • /
    • pp.73-85
    • /
    • 2016
  • This study was carried out to allelopathic effects of aqueous extracts on Coronopus didymus in order to investigate the competitive dominant in plant ecosystem and possibility application in natural herbicide. Number of species and species diversity for close to patch of C. didymus was decreased gradually site #1 (7, 1.76), site #2 (5, 1.34) and site #3 (5, 1.25). It was generally decreased the relative germination ratio (r=-0.731, p<0.01), the mean germination time, the relative elongation ratio (r=-571, p<0.01, r=-0.730, p<0.01), the relative fresh weight (r=-0.743, p<0.01), development of root hairs of receptor plants by concentration of the aqueous extracts from C. didymu. But they were different from the growing regions, the kind of receptor plants and the treatment of the aqueous extracts. Especially, it was differently effected among growing regions that inhibited more radicle than shoot by the aqueous extracts concentration of C. didymus. Total phenolic compound in the aqueous extracts of C. didymus analyzed about $23.0{\pm}1.1mg/g$. Total phenolic compounds of soil in survey area was increased gradually site #1 ($0.072{\pm}0.002mg/g$), site #2 ($0.082{\pm}0.003mg/g$) and site #3 ($0.092{\pm}0.004 mg/g$). We think that the aqueous extracts of C. didymu showed allelopathic effects on other plants. Therefore, C. didymu hold the competitive dominant of plant ecosystem in Jeju Island and possibility application of natural herbicide.

Biological Control of Mulberry Root Knot Nematode Meloidogyne incognita by Trichoderma harzianum

  • Sukumar, J.;Padma, S.D.;Bongale, U.D.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Trichoderma harzianum-THN1 parasitising the egg masses of root knot nematode Meloidogyne incognita was isolated from galled mulberry roots and evaluated for its potential to control root knot disease. In pot experiments root galling was reduced and leaf yield increased significantly following soil treatment with T. harzianum-THN1. The extracts obtained from the soils inoculated with T. harzianum-THN1 drastically inhibited the hatching of nematode eggs and the effect was irreversible even after the eggs were transferred to fresh water. The fungus was equally effective in controlling the disease in nematode infested mulberry garden under field conditions which was significant over the most commonly used egg parasitic fungus Paecilomyces lilacinus. The disease reduction recorded with T. harzianum was on par with the plants treated with the nematicide Carbofuran. The results suggest that T. harzianum- THN1 could be used as a potent ecofriendly biocontrol agent against M. incognita in mulberry without any residual toxicity to silkworms. T. harzianum- THN1 can form an important component of integrated disease management package in mulberry cultivation.

Detection of Simazine, Atrazine and Ametryn Herbicides on a Microfluidic Chip Based on CE-AD (CE-AD기반의 Microfluidic chip을 이용한 Simazine과 Atrazine 그리고 Ametryn Herbicides의 검출)

  • Islam, Kamrul;Jang, You-Cheol;Chand, Rohit;Jha, Sandeep Kumar;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1688-1689
    • /
    • 2011
  • A simple and rapid capillary electrophoresis method was developed for the quantitative analysis of common triazine herbicides. Cyclic voltammetry was employed to clarify the detection voltage which showed characteristic irreversible cathodic peaks. For the analysis, the mixture of triazine herbicides was applied in a microfluidic chip to determine the CE-separated peaks. Soil sample extracts were analyzed directly after drying and redissolution with the supporting electrolyte but without other pretreatment. The results were comparable to those obtained by HPLC with UV detection. Therefore, this method can be used in the rapid determination of pesticide/herbicide residues.

  • PDF

A Study on the Production of Glucose Isomerase by Alkalophilic Streptomyces sp. B-2 (호알칼리성 Streptomyces sp. B-2에 의한 Glucose Isomerase 생성에 관한 연구)

  • An, Tae-Yeong;Lee, Eun-Suk;Song, Jun-Hui
    • The Korean Journal of Food And Nutrition
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1989
  • Glucose isomerase (E.C.5.3.1.5) which reversibly catalyzes reaction between D-glucose and D-fructose was demonstrated in cell free extracts of alkalophilic Streptomyces sp. B-2 isolated from soil The optimum temperature, pH, and pH stability were 6$0^{\circ}C$, 10.5, and 7.8, respectively. The production of Gl in xylose and yeast extract was higher than that of other carbon source and nitrogen source. The Gl production was affected by Co2+ and Mg2).

  • PDF

Oxidation of Alkane Derivatives by Corynebacterium sp. (Alkane 유도체의 미생물학적 산화 제1보)

  • 이종근;이상준
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.185-190
    • /
    • 1983
  • Twelve Microorganisms capable of utilizing diaminododecane were isolated from the soil by enrichment culture technique. Seven strains of these were identified as Corynebacterium. The isolated strains were tested for the ability to utilize as carbon source, 10 different kind of alkane derivatives containing CN, $NH_2$, Cl, and SH groups. Laurylcyanide, dicyanooetane, chlorodecane, and dichlorodecane were not utilized by any of the isolated strains; putrescine dihydrochloride, cadaverine dihydrochloride, diaminododecane, and n-dodecane were utilized by all of the isolated strains; and all of the isolated strains except DAD 2-3 could utilize dodecylmercaptan. The alkane derivatives that did not serve as ,growth substrates were tested further in oxidation tests using resting cell preparation. Alkane derivatives that are being oxidized by all of the isolated strains are laurylcyanide and dichlorodecane. Dicyanooctane was also oxidized by all of the isolated strains except DAD 30L, chlorodecane was the only oxidized by the three isolated strains. The most remarkable substrate that is being oxidized is dichlorodecane containing CN groups diterminally. Evidence obtained with thin layer chromatography of ,ethyl acetate extracts of culture broth of isolated strains grown in some alkane derivatives shows that these alkane derivatives are degraded.

  • PDF

Antifungal Activity of Valinomycin, a Peptide Antibiotic Produced by Streptomyces sp. Strain M10 Antagonistic to Botrytis cinerea

  • Park, Cheol-Nam;Lee, Jung-Min;Lee, Dong-Ho;Kim, Beom-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.880-884
    • /
    • 2008
  • A strain of Streptomyces sp. (M10) antagonistic to Botrytis cinerea was isolated from orchard soil obtained from Jeju Island, Korea. An antifungal substance (CN1) was purified from the culture extracts of the strain, and then identified as valinomycin through extensive spectroscopic analyses. Valinomycin showed potent in vitro antifungal activity against Botrytis cinerea and also in vivo control efficacy against Botrytis blight development in cucumber plants. Overall, the disease control efficacy of valinomycin was similar to that of vinclozolin, a commercial fungicide. This study provides the first report on the disease control efficacy of valinomycin against Botrytis blight.

Behaviour of the Soil Residues of the Acaricide-Insecticide, [$^{14}C$]Acrinathrin;II. Degradation in Soil (살비살충제 [$^{14}C$Acrinathrin 토양 잔류물의 행적 규명;II. 토양중 분해)

  • Lee, Jae-Koo;Kyung, Kee-Sung;Oh, Kyeong-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.202-212
    • /
    • 1995
  • In order to elucidate the degrading characteristics of the pyrethroid acaricide-insecticide, acrinathrin in two different types of soils, Soil A(pH, 5.8; organic matter, 3.4%; C.E.C., 115 mmol(+)/kg soil; texture, sandy loam) and Soil B(pH, 5.7; organic matter, 2.0%; C.E.C., 71 mmol(+)/kg soil; texture, sandy loam), residualities of the non-labeled compound under the field and laboratory conditions, extractability with organic solvents and formation of non-extractable bound residues, and degradabilities of [$^{14}C$]acrinathrin as a function of aging temperature and aging period were investigated. The half lives of acrinathrin in Soil A treated once and twice were about 18 and 22 days and in Soil B about 13 and 15 days, respectively, in the field, whereas, in the laboratory, those in Soil A and B were about 36 and 18 days, respectively, suggesting that the compound would be non-persistent in the environment. The amounts of $^{14}CO_2$ evolved from [$^{14}C$]acrinathrin in Soil A and B during the aging period of 24 weeks were 81 and 62%, respectively, of the originally applied $^{14}C$ activity, and those of the non-extractable soil-bound residues of [$^{14}C$]acrinathrin were about 70% of the total $^{14}C$ activity remaining in both soils, increasing gradually with the aging period. Degradation of [$^{14}C$]acrinathrin in both soils increased with the aging temperature. Three degradation products of m/z 198(3-phenoxy benzaldehyde), m/z 214(3-phenoxybenzoic acid), and m/z 228(methyl 3-phenoxybenzoate) as well as an unknown were detected by autoradiography of acetone extracts of both soils treated with [$^{14}C$]acrinathrin and aged for 15, 30, 60, 90, 120, and 150 days, respectively, and the degradation pattern of acrinathrin was identical in both soils. Acrinathrin in soil turned out to be degraded to 3-phenoxybenzaldehyde cyanohydrin by hydrolytic cleavage of the ester linkage adjacent to the $^{14}C$ with a cyano group, the removal of hydrogen cyanide therefrom led to the formation of 3-phenoxybenzaldehyde as one of the major products, and the subsequent oxidation of the aldehyde to 3-phenoxybenzoic acid, followed by decarboxylation would lead to the evolution of $^{14}CO_2$.

  • PDF

Study on Characteristics of Chemical Properties and Microbial Flora of Organic Farming Soil in Korea (유기농 토양의 화학적 특성 및 미생물상 연구)

  • Park, Kwang-Lai;Suga, Yuko;Hong, Seung-Gil;Lee, Chorong;Ahn, Minsil;Kim, Seok-Cheol;Hashimoto, Tomoyoshi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.77-83
    • /
    • 2016
  • The objectives of this study was to investigate the difference between organic-farming and conventional-farming soils relatives to soil chemical properties and microbial flora. Fifteen soil sampling sites were chosen from the certified organic upland farm, considered with its location, crop and application of organic compost types. Soil chemical properties were analyzed by standard methods established by National Institute of Agricultural Sciences, Rural Development Administration. For the soil chemical properties, the values of pH were ranged from 4.5 to 7.3. The values of electrical conductivity (EC) in the sampling sites were below 2 dS/m of convention cultivation soil. For analyzing the microbial flora, the bacillus(16S rDNA) and cladothricosis(18S rDNA) were analyzed by using PCR-DGGE (Denaturing Gradient Gel Electrophoresis) in the soil of 15 sampling sites. Cluster analysis of biodiversity index was performed by using pattern of DGGE. DGGE patterns and clustering analysis of bacterial DNA from soil extracts revealed that the bacterial community was differentiated between less than 5 years and more than 5 years depending on the cultivation history. But there was no consistent tendency between cultivation history and regional trend in the case of molds. Therefore, it would be very effective to analyze bacterial clusters of organically cultivated soils in long - term cultivated soil for more than 5 years.