• Title/Summary/Keyword: Soil Component

Search Result 581, Processing Time 0.023 seconds

국가 지하수 관측망 자료를 이용한 충적층 지하수 함양률의 공간적 변동성 연구

  • 문상기;우남칠;한원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.237-242
    • /
    • 2002
  • This study is objected to assess the recharges of phreatic aquifers in the south Korea. The water level data of the national ground-water monitoring network were analysed by PCA(Principal Component Analysis), and classified to 8 types. The recharge were estimated by ‘water-level change method’ on basis of the classified types and compared with the previous methods(hydrograph separation methods) on basis of 4 river basins. The recharge were various type by type and site by site. But the recharge estimated by this study were consistent with that of the other studies.

  • PDF

Korean Soil Characteristics Database for SWAT-K Model (SWAT-K 모형의 국내 토양특성 정보 구축)

  • Lee, Jeong Eun;Kim, Chul-Gyum;Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.495-501
    • /
    • 2024
  • SWAT-K (Soil and Water Assessment Tool-Korea) model is a long-term runoff model using a soil-centered water balance equation. Soil is crucial for simulating hydrological components, requiring a database (usersoil.dbf) with soil series attribute information. Since the soil property information estimated by soil transfer functions developed overseas does not reflect the characteristics of domestic soil, the Korea Institute of Civil Engineering and Building Technology has established the soil database, which incorporates the results of domestic soil surveys and research from the National Institute of Agricultural Sciences. This study provides a more detailed description of the hydrological component simulation process using soil property information and revises and supplements the previously established soil database to operate in the latest SWAT model. Additionally, by providing this database through the integrated water management platform, it is expected to be utilized not only in the SWAT-K model but also in various watershed hydrological models developed considering soil characteristics.

Investigation of linear and nonlinear of behaviours of reinforced concrete cantilever retaining walls according to the earthquake loads considering soil-structures interactions

  • Gursoy, Senol;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.75-91
    • /
    • 2009
  • It is known that retaining walls were severely damaged as well in the most recent earthquakes having occurred in the countries in the active seismic belts of the world. This damage can be ascribed to the calculation methods used for the designs of retaining walls in the event of their constructions and employment having been accurately carried out. Generally simplified pseudo-static methods are used in the analysis of retaining walls with analytical methods and soil-structure interaction are not considered. In view of these circumstances, in this article by taking soil interaction into consideration, linear and nonlinear behaviours of retaining walls are analyzed with the assistance of LUSAS which is one of the structural analysis programs. This investigations are carried out per LUSAS which employs the finite element method as to the Erzincan (1992) Earthquake North-South component and the obtained findings are compared with the ones obtained from the method suggested in Eurocode-8, which is still effective today, and Mononobe-Okabe method. Not only do the obtained results indicate the distribution and magnitude of soil pressures are depend on the filling soil but on the foundation soil as well and nonlinear effects should be considered in designs of these walls.

Analysis of the Grounding Impedance of a Ground Rod Considering the Frequency-Dependent Resistivity and Relative Permittivity of Soil (토양의 저항률 및 비유전율의 주파수의존성을 고려한 접지봉의 접지임피던스의 해석)

  • Ahn, Chang-Hwan;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • When the transient current with high frequency components such as lightning surges are injected the grounding electrodes, the performance of grounding electrodes should be evaluated as grounding impedance. It is restricted to analyze the grounding impedance by measurement approach since the grounding impedance is very different with the shape and size of grounding electrodes, resistivity and relative permittivity of soil and the frequency component of the injected current. So a variety of simulation approaches have been developed. Typically, the soil resistivity measured with low frequency and relative permittivity between 1 and 80 are used for simulation of the grounding impedance. However, the resistivity and relative permittivity of soil are changed with frequency of injected current. In this paper, the frequency-dependent resistivity and relative permittivity of soil are measured and these parameters are reflected in the simulation of the grounding impedance of a ground rod. The simulated results are compared with the measured results. As a result, the simulated results with frequency-dependent soil parameters show capacitive aspect like measured results in the frequency of lower than 100[kHz] and they are more consistent with the measured results in wide frequency range.

Effects of Continuous Application of Green Manures on Microbial Community in Paddy Soil

  • Kim, Sook-Jin;Kim, Kwang Seop;Choi, Jong-Seo;Kim, Min-Tae;Lee, Yong Bok;Park, Ki-Do;Hur, Seonggi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.528-534
    • /
    • 2015
  • Green manure crops have been well recognized as the alternative for chemical fertilizer, especially N fertilizer, because of its positive effect on soil and the environment. Hairy vetch and green barley are the most popular crops for cultivation of rice in paddy field. This study was conducted to evaluate effects of hairy vetch and green barley on soil microbial community and chemical properties during short-term application (three years). For this study, treatments were composed of hairy vetch (Hv), green barley (Gb), hairy vetch + green barley (Hv+Gb), and chemical fertilizer without green manure crops (Con.). Hv+Gb treatment showed the highest microbial biomass among treatments. Principal component analysis (PCA) showed that PC1 (73.0 %) was affected by microbial biomass and PC2 (21.5 %) was affected by fungi, cy19:0/18:$1{\omega}7c$ (stress indicator). Combined treatment with hairy vetch and green barley could be more efficient than green manure crop treatment as well as chemical fertilizer treatment for improvement of soil microorganisms.

A new approach on soil-structure interaction.

  • Gilbert, C.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.101-110
    • /
    • 2002
  • This article summarises the traditional method of soil-structure interaction based on the modulus of subgrade reaction and shows its weakness. In order to avoid these weakness, a new soil-structure interaction model is proposed. This model considers the soil as a set of connected springs which enables interaction between springs. Its use is as simple as the traditional model but allows to define the soil properties independently from the structural properties and the loading conditions. Thus, the definition of the modulus of subgrade reaction is unnecessary as each component is defined by its own modulii (Young's modulus and shear modulus). The non-linear soil behaviour for the shear stress versus distortion is also incorporated in the model. This feature allows to pinpoint the arching effect in the ground and shows how the stresses concentrate on stiff materials. Based on these principles, three dimensional program has been developed in order to solve the difficult problem of soil improvement by inclusions (stiff or soft). Also the possibility to take into account a flexible mat and/or a subgrade layer has been implemented. Equations used in the model are developed and a parametric study of the necessary data used in the program is presented. In particular, the Westergaard modulus notion and the arching effect are analysed.

  • PDF

Migration of calcium hydroxide compounds in construction waste soil

  • Shin, Eunchul;Kang, Jeongku
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.183-196
    • /
    • 2015
  • Migration of leachate generated through embankment of construction waste soil (CWS) in low-lying areas was studied through physical and chemical analysis. A leachate solution containing soluble cations from CWS was found to have a pH above 9.0. To determine the distribution coefficients in the alkali solution, column and migration tests were conducted in the laboratory. The physical and chemical properties of CWS satisfied environmental soil criteria; however, the pH was high. The effective diffusion coefficients for CWS ions fell within the range of $0.725-3.3{\times}10^{-6}cm^2/s$. Properties of pore water and the amount of undissolved gas in pore water influenced advection-diffusion behavior. Contaminants migrating from CWS exhibited time-dependent concentration profiles and an advective component of transport. Thus, the transport equations for CWS contaminant concentrations satisfied the differential equations in accordance with Fick's 2nd law. Therefore, the migration of the contaminant plume when the landfilling CWS reaches water table can be predicted based on pH using the effective diffusion coefficient determined in a laboratory test.

Formation of humus-bound residues in the course of BTX biodegradation in soil

  • Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • To examine whether the xylene component of BTX (benzene, toluene, xylene) mixture is cometabolized and residues are produced in soil, $\^$14/C-labeled-0-xylene was added to sandy loam in combination with unlabeled benzene and toluene. After 4 weeks of incubation in a sealed system connected to an oxygen reservoir, 55.1% of the radiocarbon was converted to $\^$14/CO$\sub$2/, 3.0% was to 95.8% radiocarbon recovery. Biomass incorporation of o-xylene radiocarbon which was detected by fumigation/extraction was usually low (5.6%), but 32.1% radiocarbon became associated with soil humus. Most of the numus-bound radiocarbon was found in humin fraction. In addition to o-xylene, p-xylene and toluene also showed similar results. The evidence shows that some of their reactive methylcatechol biodegradation intermediates attach to the humic metrix in soil in preference to mineralization and biomass incorporation.

  • PDF

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary;Kshitij C. Shrestha;Ojaswi Acharya
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2023
  • Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.

Physical and Chemical Characteristics of Dokdo Soil

  • Lee, Gil-Seong;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2009
  • To understand the properties of soil in Dokdo, we collected soil samples from 12 locations on Seodo and 23 locations on Dongdo, in Dokdo of Gyeongsangbuk-do Province in 2007-2008 and analyzed the soil's physical and chemical characteristics. Sand comprises the largest component (49.37%) of Dokdo soil, followed by silt (40.70%) and clay (9.93%). The soil structure consists mostly of sand loam, followed by loam and silt loam. The pH level of soils from Dokdo varied dramatically among sampling sites and seasons, ranging from 3.36 to 8.02. The total ion content of Dokdo soil also varies greatly among survey places and periods, but in general the total ion content was high in summer when vegetation develops, and low in spring. The exchangeable cation contents of the soil showed low levels in samples where the soil pH was low, including habitats dominated by Agropyron tsukushiense var. transiens and Echinochloa crus-galli, whereas the exchangeable cation contents were high where the organic contents were high, as in habitats dominated by Liriope platyphylla and Artemisia japonica subsp. littoricola. Soil N contents varied greatly among survey sites and higher N contents were found in soil inhabited by Chenopodiaceous plants than in habitats inhabited by other plants. The substantial differences in phosphorus contents among sites were related to excrement of black-tailed gulls. To understand the basic physical and chemical features of the soil on Dokdo, it will be necessary to conduct seasonal and long-term research on soil pH, ion contents, organic contents, N and P, as well as obtaining precise data from samples collected at different depths.