• Title/Summary/Keyword: Software reliability model

Search Result 583, Processing Time 0.026 seconds

Development of a Process Capability Assessment Method for Process-based Industries (공정기반 산업의 프로세스 인프라 역량 평가 방법 제안 및 적용)

  • Kang, Young-Mo;Im, Byeong-Hyeok;Yoon, Byun-Gun;Lee, Sung-Joo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • Recently, as organizational systems have become larger and more complicated, the evaluation for their efficiency and effectiveness has become more difficult but important. It is essential to understand the current strength and weakness of the organizational process. It can be a starting point for improving the efficiency and effectiveness of the organizational systems, because the quality of system outputs depend greatly on the capability of system process. Particularly in such process-based industries as semiconductor, energy or software industries, an assessment of process capability is more highlighted to gain knowledge of the expected quality and reliability of system outputs. As a result, much attention has been given to the issues of process capability assessment in the process-based industries. However, most of the previous research in those industries is based on case studies, a more generalized method for process capability assessment is in need for help more companies improve their processes. Therefore, this study aims to propose a process capability assessment method and apply the proposed method to an energy company. This research argues that the process capability is composed of individual and organizational capabilities of the process. Then, the concept of Capability Maturity Model Integration, which was initially suggested to evaluate the software development process, was introduced to develop the assessment tools and process. Finally, the proposed method was applied to a Korean company in the energy industry sector to verify its utility. The research outputs are expected to help more firms assess their process capability and ultimately improve the process.

Database Reverse Engineering Using Master Data in Microservice Architecture (마스터 데이터를 활용한 마이크로 서비스 아키텍처에서의 데이터베이스 리버스 엔지니어링)

  • Shin, Kwang-chul;Lee, Choon Y.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.523-532
    • /
    • 2019
  • Microservice architecture focuses on dividing it into small and lightweight services to build for the purpose of performing very close business functions. So it tends to concentrate only on agility, productivity, reliability, and ease of deployment of software development. Microservice architecture considers database as just a file or storage for storing and extracting data, emphasizing that data quality can be sacrificed for convenience and scalability of software development. Database reverse engineering for understanding database structure and data semantics is needed for data utilization for business decision making. However, it is difficult that reverse database engineering is applied in microservice architecture that neglects data quality. This study proposes database reverse engineering method that utilizes master data to restore the conceptual data model as a solution. The proposed method is applied to the return service database implemented by microservice architecture and verified its applicability.

Reduction in Pressure Ripples for a Bent-Axis Piston Pump (사축식 액셜 피스톤 펌프의 압력맥동 감소)

  • Kim, Kyung-Hoon;Sohn, Kwon;Jang, Joo-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Bent-axis piston pump have been commonly used in hydraulic systems because of high pressure level, best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the bent-axis piston pump require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the bent-axis piston pump was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a parallel line could reduce the discharge pressure wave of the pump well. The analysis model of the bent-axis piston pump developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

A Transition Reduction Algorithm of Finite State Machines using Slice Models (Slice 모델을 이용한 유한상태머신의 트랜지션 축약 알고리즘)

  • Lee, Woo-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.12-21
    • /
    • 2008
  • As the usage of computer systems is increasing in our lives, the reliability and safely of these systems need to be thoroughly checked through the verification techniques. As a basic formalism for several modeling methods, the finite state machine (FSM) is widely used in specification and verification of system models. And there is a technique for ing internal events of FSM in order to effectively analyze the system. However, this technique does not handle the state explosion problem since it can be applied after completely generating all the state space of the system. In this research, we provide a new approach for efficiently representing concurrent properties of FSM, the slice model and provide an efficient transition reduction method based on the slice model. Our approach is effective in time and space perspective since it is peformed by partially generating the needed system states while the existing abstraction technique can be applied to all the system states.

A Study on the Influence of Automatic Control System on the Production of Chemical Propylene (자동제어 시스템이 케미칼 프로플린 생산에 미치는 영향 연구)

  • Lee, Oh Sick;Leem, Choon Seong
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.34-42
    • /
    • 2019
  • In this study, we analyzed the effects of the automatic control system on the reactor operation. The Propyrene Reactor process is complex and typically is inefficient and costly due to the lack of productivity. In this study, a research model was presented with the aim of supplementing obstacles to enhance operational efficiency and increase productivity. The configuration of the existing processes was analyzed to complement the hardware and software systems with original models. The composition of the facility is applied to eight reactor units producing 600,000 ton/year propylene per year. As a result of applying the research model, efficiency of operation was increased, and production volume increased from 90 to 95%, along with 91% Reliability. Future studies will present a research model to improve productivity by 100 percent. In addition, we will study the stability and productivity improvement of PSA (Pressure Swing Adsorption) systems, which are the hydrogen production process of propylene by-products.

Research on 5G Base Station Evaluation Method through Electromagnetic Wave Intensity Prediction Model (전자파 강도 예측 모델을 통한 5G 기지국 평가 기법 연구)

  • Lee, Yang-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.558-564
    • /
    • 2021
  • With the recent introduction of 5G, electromagnetic radiation sources are spreading throughout life, so it is necessary to establish a citizen-centered electromagnetic safety management system. In particular, the beamforming method of the 5G antenna increases the power density measurement of electromagnetic waves by more than 10 times when the wireless base station is installed, so it is unreasonable to determine the safety by physical measurement. Therefore, it is necessary to determine the presence or absence of electromagnetic wave safety in daily life through a predictive method by calculation through systematic model analysis. In this paper, in order to check the possibility of a 5G wireless base station using an electromagnetic wave numerical analysis tool as a way to solve this problem, we compared the measured values of the actual base stations and the predicted values through the prediction model to compare the reliability. A method of constructing a real-time base station electromagnetic wave strength prediction evaluation system combined with software was also proposed.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.123-130
    • /
    • 2022
  • In this paper is one of the measures to prevent concrete collapse accidents at construction sites in advance. Analyzed based on accumulated Meteorological Agency data. It is a reliable model that confirms the prediction of the decrease rate occurrence interval, and the verification items such as p_value is 0.5 or less and ecof appears in one direction through the SARIMA model, which is suitable for regular and clear time series data models, ensure reliability. Significant results were obtained. As a result of analyzing the temperature change by time zone and the water reduce ratio by section using the data secured based on such trust, the water reduce ratio is the highest in the 29-31 ℃ section from 12:00 to 13:00 from July to August. found to show. If a factor in the research result interval occurs using the research results, it is expected that the batch plant will produce Ready-mixed concrete that reflects the water reduce ratio at the time of designing the water-cement mixture, and prevent the decrease in concrete compressive strength due to the water reduce ratio.

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.47-55
    • /
    • 2023
  • This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.

O-ring Size Measurement Based on a Small Machine Vision Inspection Equipment (소형 머신 비전 검사 장비에 기반한 O링 치수 측정)

  • Jung, YouSoo;Park, Kil-Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.41-52
    • /
    • 2014
  • In this paper, O-ring size measurement algorithm based on a small machine vision inspection equipment which can replace a expensive and large machine vision inspection equipment is presented. The small machine vision inspection equipment acquires a image from a CCD camera shooting a measurement plane which located on a back light and the proposed size measurement algorithm is apply to the image. For improvement of size measurement accuracy, camera lens distortion correction and perspective distortion correction are conducted by software technique. Consider O-ring's shape, ellipse fitting model is applied. In order to increase the reliability of ellipse fitting, RANSAC algorithm is applied.

Analysis of Influence Factors on the Intention to Use Personal Cloud Computing (개인용 클라우드 컴퓨팅 사용에 미치는 영향요인 분석)

  • Ryu, Jae Hong;Moon, Hye Young;Choi, Jinho
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.319-335
    • /
    • 2013
  • Cloud computing allows users to access software or specific programs that support the cloud platform through an information communicating device that can connect to the internet anywhere or anytime. Also, the cloud architecture not only reduces the expenses of IT infrastructure construction and maintenance, but also speeds up processing and mobility, which leads to a significant ease of use. In spite of the advantages of cloud computing, previous studies have been centered on case studies of the execution, advantages, and problems of cloud computing. In contrast, empirical research on individual cloud computing up till now is very insufficient. Thus, the research aims to create a model of an individual user's perspective and verify validation. This study reveals types of influence that characteristics can have on an individual user's intention to use, by searching the characteristics that the individual user recognizes on cloud computing services. The results are as follows:first, the characteristics of cloud computing indicates a significant influence on usage intention. Second, all characteristics in cloud computing, accessibility, reliability, perceived ease of use, and fusibility, are confirmed in providing significant influences in shaping social influence forms. Third, social influence has a significant influence on usage intention.