• Title/Summary/Keyword: Software Engineer

Search Result 115, Processing Time 0.029 seconds

Impact Analysis of BIM Spread on Mechanical Design Process Based on Consciousness Survey among Japanese Mechanical Engineers

  • Hiyama, Kyosuke;Diao, Yunting;Kato, Shisuke;Koganei, Makoto
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2013
  • Recently, the demand for Building Information Modeling (BIM) construction drawings and specifications has increased rapidly. Many countries have also started to implement BIM. The BIM implementation can change the design flow of buildings including high-rise buildings. Against this background, many companies are focusing on the development of BIM software. BIM involves a three-dimensional CAD program that can examine the placement of ductwork and machinery. It significantly increases the efficiency of a mechanical design through data unification using standard Industry Foundation Classes (IFC). In addition, BIM functions as a database to simplify the use of simulation technology for designing air-conditioning systems. To further develop BIM, it is important to know the expectations of mechanical engineers who will become frequent users of BIM in the future. A survey was conducted among Japanese mechanical engineers using a questionnaire to analyze the expectations of mechanical design using BIM. The results show that many respondents strongly recognize BIM as a three-dimensional CAD program. However they also expect that BIM can help the optimization of their design works and enhance design functionality by running simulations utilizing BIM.

A Testing Method for Evaluating the Call Success Rate of a Mobile Communication System using Interval Estimation (구간 추정 기법을 이용한 이동통신 시스템의 통화 성공률 시험 방법)

  • Hwang, Ik-Soon;Park, Jae-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.494-498
    • /
    • 2010
  • Performance requirements of a system are usually closely related to the quality of service provided by the system. The call success rate of a mobile communication system is, for example, directly linked with the quality of call service. Therefore, meeting the performance requirements is one of the critical issues during the operation of services as well as in system development. In this paper, we present a testing method for evaluating the call success rate of a mobile communication system by using interval estimation. Also we analyze the criterion used in the evaluation of the quality of 3G mobile communication services which was recently performed by Korea Communications Commission and then discuss the problems.

A Study on the Automatic Design Supporting for Automobile Bonnet Tools (자동차 보닛금형의 자동설계 지원시스템에 관한 연구)

  • 정효상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.131-141
    • /
    • 2004
  • In this study a 3-D automatic die design supporting system for a bonnet panel has been developed using Pro/ROGRAM of the widespread CAD software Pro/ENGINEER A standard drawing die was defined in terms of the punch profile, the die face geometry, and the blank sheet size. The strip layout of a trimming die was defined, in addition, in terms of the trimming line and the locations of scrap cutters. Necessary relations for each design step are formulated and rules for bottom-up type 3-D die design were set up for the automatic design of drawing and trimming dies of a bonnet. With the input geometric data of punch profile, die face, and blank sheet, this 3-D design supporting system could complete the basic design process, in case of the bonnet drawing die, in a time 78% shorter than that required by a typical 2-D CAD system. The new design system showed remarkable design efficiency also when it was applied to the case of redesign and modification of the previous standard output for a different car type.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

Design and Implementation of an Elevator Vibration Measuring System using 3-Axis Acceleration Sensor (3축 가속도 센서를 이용한 엘리베이터 진동측정시스템 설계 및 구현)

  • Choi, Sung-Hyun;Kim, Jong-Soo;Kim, Tai-Suk;Yu, Yun-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.226-233
    • /
    • 2013
  • Self-diagnosis, regular examination, completion examination and precise safety examination on an elevator offer primary sources for evaluating performance and stability of the elevator. as critical examination for operating the elevator. The items on vibration of an elevator in the self-diagnosis and safety examination are not especially specified but vibration itself is considered as essential element to provide diverse analysis data. There is the equipment "EVA-625" for measuring vibration of an elevator. It is operated by reading data via computer and analyzing data by skilled engineer. This study aims to design and realize software to analyze data collected through the LabVIEW, a graphic program language and hardware for receiving data measuring vibration of an elevator by using 3-Axis acceleration sensor.

The Manufacture of Custom Made 3D Titanium Implant for Skull Reconstruction

  • Cho, Hyung Rok;Yun, In Sik;Shim, Kyu Won;Roh, Tai Suk;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.13-15
    • /
    • 2014
  • Nowadays, with advanced 3D printing techniques, the custom-made implant can be manufactured for the patient. Especially in skull reconstruction, it is difficult to design the implant due to complicated geometry. In large defect, an autograft is inappropriate to cover the defect due to donor morbidity. We present the process of manufacturing the 3D custom-made implant for skull reconstruction. There was one patient with skull defect repaired using custom-made 3D titanium implant in the plastic and reconstructive surgery department. The patient had defect of the left parieto-temporal area after craniectomy due to traumatic subdural hematoma. Custom-made 3D titanium implants were manufactured by Medyssey Co., Ltd. using 3D CT data, Mimics software and an EBM (Electron Beam Melting) machine. The engineer and surgeon reviewed several different designs and simulated a mock surgery on 3D skull model. During the operation, the custom-made implant was fit to the defect properly without dead space. The operative site healed without any specific complications. In skull reconstruction, autograft has been the treatment of choice. However, it is not always available and depends on the size of defect and donor morbidity. As 3D printing technique has been advanced, it is useful to manufacture custom-made implant for skull reconstruction.

Prediction of Hemolysis in Intra-Cardiac Axial Flow Blood Pumps for Optimization of the Impellers (심장 내 이식형 축류 혈액펌프의 임펠러 최적화를 위한 용혈량 예측)

  • Kim, Dong-Uk;Mitamura, Yoshinori
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.431-437
    • /
    • 2002
  • Low hemolysis is one of the key factors in the production of successful rotary blood pumps. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics(CFD) analysis enables the engineer to predict hemolysis on a computer Fluid dynamics in five different axial flow pumps was analyzed 3-dimensionally using CFD software. The impeller was rotated at a speed which supplied a flow of 5L/min at a pressure difference of 100mmHg. Changes in the turbulent kinetic energy along streamlines through the pumps were computed. Reynolds' shear stress( (equation omitted) ) was calculated using the turbulent kinetic energy. Hemolysis was evaluated based on Reynolds'shear stress and its exposure time(t) : dHb/Hb=3.62$\times$10$^{-5}$ $t^{0.785}$$\tau$$^{2.416}$ . Hemolysis of the pumps was measured in vitro using fresh bovine blood to which citrate phosphate dextrose was added to prevent clotting. A pump flow of 5L/min was maintained at a pressure difference of 100mmHg for 3h. The normalized index of hemolysis(NIH) as measured. Reynolds' shear stress was high behind the impellers. The measured NIH and the calculated hemolysis(dHb/Hb) shoed a good correlation; NIH=0.0003(dHb/Hb) (r=0.90, n=6) in the range of NIH between 0.003 and 1.1. CFD analysis can predict the in vitro results of hemolysis as well as the areas where hemolysis occurs.ysis occurs.

A Study on 3-Dimensional Surface Measurement using Confocal Principle (공초점 원리를 이용한 3차원 표면형상 측정에 관한 연구)

  • Kang, Young-June;Song, Dae-Ho;You, Weon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • In modern industry, the accuracy and the sulfate-finish requirements for machined parts have been becoming ever more stringent. In addition, the measurement and understanding of surface topography is rapidly attracting the attention of the physicist and chemist as well as the engineer. Optical measuring method is used in vibration measurement, crack and defect detection with the advent of opto-mechatronics, and it is expected to play an important role in surface topography. In this study, the principle of confocal microscope is described, and the advanced 3-D surface measuring system that has better performance than the traditional confocal microscope is developed. Suitable fixtures arc developed and integrated with the computer system for generating 3-D surface and form data. Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

3-D Finite Element Analysis of Acetabular Reconstruction of THR (인공고관절 전치환술에 있어서 비구 재건 술에 관한 3차원 유한요소해석)

  • Ryu, J.C.;Mun, M.S.;Kim, G.S.;Yoo, M.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.34-38
    • /
    • 1995
  • Using a 3-D finite element method (FEM), the biomechanical characteristics of a threaded truncated acetabular component and a porous coated hemispherical acetabular component were studied. The Von-Mises stress/strain patterns in the acetabulum reconstructed with these two different types of cementless acetabular cups were investigated. The geometry and dimensions of human hemi-pelvis used in the present shape modeling for finite element analysis were scanned with a 3-D laser scanner(TDS-9000, Cyberware, USA). The scanned data was numerically handled with a shape modelling software 'Pro-Engineer'. Using 19836, 16853 tetrahedral elements, respectively, the stress and displacement field of the acetabulum reconstructed with the two different types of the acetabular components were computed. While the hemi-sphere component was found to show a relatively similar stress/strain patterns to those in the normal hip, the results with the threaded cup showed a considerably different patterns from those in the normal condition. Several regions in cancellous bone near the threads and the edge of the truncated cup was found to be overstressed, especially in the superior-lateral part of the acetabulum. It was postulated that the excessive reaming-out of subchondral bone layer when the truncated cup was used can cause the presence of these overstressed regions of cancellous bone. This theoretical prediction for the implanted acetabulum appeared to consistent with the pathological observation of proximal/medial migration of the threaded truncated acetabular prostheses in the previous publications.

  • PDF

A Study on Development of BIM-based Engineering Management System for Temporary Work (BIM기반 가설공사 업무지원시스템 개발에 관한 연구)

  • Choi, Changhoon;Han, Choonghee;Lee, Junbok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • As the amount of information generated in the construction project increases exponentially, design and construction review have a serious impact on the success of the site. For this reason, academic and business circles have been expanding the use of BIM at the whole life, and BIM is now accepted as one of the standards used in the construction industry. However, the BIM-based design for the temporary work is used as an aid to the 2D design because there is no specialized software and there is absolutely lack of a professional engineer. The objective of this research is to develop BIM-based temporary work support system. This system minimizes human errors in BIM-based design, quantity takeoff and inspection and shortens working hours.