• 제목/요약/키워드: Software Defined

검색결과 1,354건 처리시간 0.026초

Weight Adjustment Scheme Based on Hop Count in Q-routing for Software Defined Networks-enabled Wireless Sensor Networks

  • Godfrey, Daniel;Jang, Jinsoo;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.22-30
    • /
    • 2022
  • The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties, such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network, where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among competing performance metrics.

Flow Scheduling in OBS Networks Based on Software-Defined Networking Control Plane

  • Tang, Wan;Chen, Fan;Chen, Min;Liu, Guo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.1-17
    • /
    • 2016
  • The separated management and operation of commercial IP/optical multilayer networks makes network operators look for a unified control plane (UCP) to reduce their capital and operational expenditure. Software-defined networking (SDN) provides a central control plane with a programmable mechanism, regarded as a promising UCP for future optical networks. The general control and scheduling mechanism in SDN-based optical burst switching (OBS) networks is insufficient so the controller has to process a large number of messages per second, resulting in low network resource utilization. In view of this, this paper presents the burst-flow scheduling mechanism (BFSM) with a proposed scheduling algorithm considering channel usage. The simulation results show that, compared with the general control and scheduling mechanism, BFSM provides higher resource utilization and controller performance for the SDN-based OBS network in terms of burst loss rate, the number of messages to which the controller responds, and the average latency of the controller to process a message.

국가연구망의 발전방향 및 차세대 국가연구망 보안 (Developement Strategy for the National Research Network and Next Generation Network Security)

  • 이명선;조부승;박형우;김현철
    • 융합보안논문지
    • /
    • 제16권7호
    • /
    • pp.3-11
    • /
    • 2016
  • 최근 광네트워킹 기술의 급격한 발전, SDN (Software-Defined Network) 및 NFV (Network Function Virtualization)로 대두되는 네트워크의 소프트웨어화, 그리고 단순한 고성능연결서비스를 포함한 연구협업을 가능하게 하는 플랫폼으로써의 연구망 등 인터넷 서비스을 포함한 연구망에서는 급격한 변화가 진행되고 있다. 이에 슈퍼컴과 함께 국가과학기술경쟁력을 대표하는 국가연구망의 향후 발전방향을 선진 국가연구망의 비교분석 및 사회가 요구하는 연구망의 역할 변화에 맞추어 조망해본다. 또한 국가연구망 백본의 40Gbps 및 100Gbps급 초광대역 네트워크화, 대용량의 데이터를 고속으로 전송하기 위한 Science DMZ 기반의 망분리, 마지막으로 BRO 기반 프로그래머블 가능한 캠퍼스 네트워크 Lastmile 보안 환경 구축 방안을 제시한다.

A Dynamic Placement Mechanism of Service Function Chaining Based on Software-defined Networking

  • Liu, Yicen;Lu, Yu;Chen, Xingkai;Li, Xi;Qiao, Wenxin;Chen, Liyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4640-4661
    • /
    • 2018
  • To cope with the explosive growth of Internet services, Service Function Chaining (SFC) based on Software-defined Networking (SDN) is an emerging and promising technology that has been suggested to meet this challenge. Determining the placement of Virtual Network Functions (VNFs) and routing paths that optimize the network utilization and resource consumption is a challenging problem, particularly without violating service level agreements (SLAs). This problem is called the optimal SFC placement problem and an Integer Linear Programming (ILP) formulation is provided. A greedy heuristic solution is also provided based on an improved two-step mapping algorithm. The obtained experimental results show that the proposed algorithm can automatically place VNFs at the optimal locations and find the optimal routing paths for each online request. This algorithm can increase the average request acceptance rate by about 17.6% and provide more than 20-fold reduction of the computational complexity compared to the Greedy algorithm. The feasibility of this approach is demonstrated via NetFPGA-10G prototype implementation.

가시광 무선통신 기반의 스마트 농업 시스템 (A Smart Farming System Based on Visible Light Communications)

  • 염태화;박성미;권혜인;황덕규;김정창
    • 한국통신학회논문지
    • /
    • 제38C권5호
    • /
    • pp.479-485
    • /
    • 2013
  • 본 논문에서는 software defined radio (SDR) 기술 기반의 가시광 (visible light) 무선통신 및 RF 무선통신을 이용한 스마트 농업 시스템을 제안한다. 제안된 시스템은 스마트 농업을 위하여 무선 센서네트워크를 구축하여 LED 식물공장을 지속적으로 모니터링할 수 있다. 또한, LED 식물공장을 자동으로 제어가 가능하도록 하여 농작물 재배지를 항상 최적의 환경으로 유지할 수 있다. 더 나아가, 농작물 재배 환경을 데이터베이스화하여 농작물 재배지가 보다 효율적으로 관리될 수 있을 것으로 기대한다.

Fast Recovery Routing Algorithm for Software Defined Network based Operationally Responsive Space Satellite Networks

  • Jiang, Lei;Feng, Jing;Shen, Ye;Xiong, Xinli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.2936-2951
    • /
    • 2016
  • An emerging satellite technology, Operationally Responsive Space (ORS) is expected to provide a fast and flexible solution for emergency response, such as target tracking, dense earth observation, communicate relaying and so on. To realize large distance transmission, we propose the use of available relay satellites as relay nodes. Accordingly, we apply software defined network (SDN) technology to ORS networks. We additionally propose a satellite network architecture refered to as the SDN-based ORS-Satellite (Sat) networking scheme (SDOS). To overcome the issures of node failures and dynamic topology changes of satellite networks, we combine centralized and distributed routing mechanisms and propose a fast recovery routing algorithm (FRA) for SDOS. In this routing method, we use centralized routing as the base mode.The distributed opportunistic routing starts when node failures or congestion occur. The performance of the proposed routing method was validated through extensive computer simulations.The results demonstrate that the method is effective in terms of resoving low end-to-end delay, jitter and packet drops.

WORM-HUNTER: A Worm Guard System using Software-defined Networking

  • Hu, Yixun;Zheng, Kangfeng;Wang, Xu;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.484-510
    • /
    • 2017
  • Network security is rapidly developing, but so are attack methods. Network worms are one of the most widely used attack methods and have are able to propagate quickly. As an active defense approach to network worms, the honeynet technique has long been limited by the closed architecture of traditional network devices. In this paper, we propose a closed loop defense system of worms based on a Software-Defined Networking (SDN) technology, called Worm-Hunter. The flexibility of SDN in network building is introduced to structure the network infrastructures of Worm-Hunter. By using well-designed flow tables, Worm-Hunter is able to easily deploy different honeynet systems with different network structures and dynamically. When anomalous traffic is detected by the analyzer in Worm-Hunter, it can be redirected into the honeynet and then safely analyzed. Throughout the process, attackers will not be aware that they are caught, and all of the attack behavior is recorded in the system for further analysis. Finally, we verify the system via experiments. The experiments show that Worm-Hunter is able to build multiple honeynet systems on one physical platform. Meanwhile, all of the honeynet systems with the same topology operate without interference.

A Dynamic Defense Using Client Puzzle for Identity-Forgery Attack on the South-Bound of Software Defined Networks

  • Wu, Zehui;Wei, Qiang;Ren, Kailei;Wang, Qingxian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.846-864
    • /
    • 2017
  • Software Defined Network (SDN) realizes management and control over the underlying forwarding device, along with acquisition and analysis of network topology and flow characters through south bridge protocol. Data path Identification (DPID) is the unique identity for managing the underlying device, so forged DPID can be used to attack the link of underlying forwarding devices, as well as carry out DoS over the upper-level controller. This paper proposes a dynamic defense method based on Client-Puzzle model, in which the controller achieves dynamic management over requests from forwarding devices through generating questions with multi-level difficulty. This method can rapidly reduce network load, and at the same time separate attack flow from legal flow, enabling the controller to provide continuous service for legal visit. We conduct experiments on open-source SDN controllers like Fluid and Ryu, the result of which verifies feasibility of this defense method. The experimental result also shows that when cost of controller and forwarding device increases by about 2%-5%, the cost of attacker's CPU increases by near 90%, which greatly raises the attack difficulty for attackers.

Load Aware Automatic Channel Switching for Software-Defined Enterprise WLANs

  • Han, Yunong;Yang, Kun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5223-5242
    • /
    • 2017
  • In the last decade, the 2.4 GHz band of IEEE 802.11 WLANs has become heavily congested due to the explosive increase in demand of Wi-Fi connectivity. With the current deployment of enterprise WLANs, channel switching mechanism continues to exhibit inefficiencies because it cannot adapt to real-time channel condition and the inability to support seamless channel switching. Software Defined Networking (SDN) as an emerging architecture is promising to introduce flexibility and programmability for wireless network management. Leveraging SDN to existing enterprise WLANs, channel switching method can be improved significantly. This paper presents a software-defined enterprise WLAN framework with a load aware automatic channel switching solution, which utilizes AP load and channel interference factor (CIF) to provide seamless channel switching. Two automatic channel switching algorithms named Single Switch (SS) and Double Switch (DS) are proposed to improve the overall user experience and the experience of users with highest traffic load respectively. Experiment results demonstrate that our solution can efficiently improve user experience in terms of jitter, transmission delay and network throughout when compared to the conventional channel switching mechanism.

An Improved Adaptive Scheduling Strategy Utilizing Simulated Annealing Genetic Algorithm for Data Center Networks

  • Wang, Wentao;Wang, Lingxia;Zheng, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5243-5263
    • /
    • 2017
  • Data center networks provide critical bandwidth for the continuous growth of cloud computing, multimedia storage, data analysis and other businesses. The problem of low link bandwidth utilization in data center network is gradually addressed in more hot fields. However, the current scheduling strategies applied in data center network do not adapt to the real-time dynamic change of the traffic in the network. Thus, they fail to distribute resources due to the lack of intelligent management. In this paper, we present an improved adaptive traffic scheduling strategy utilizing the simulated annealing genetic algorithm (SAGA). Inspired by the idea of software defined network, when a flow arrives, our strategy changes the bandwidth demand dynamically to filter out the flow. Then, SAGA distributes the path for the flow by considering the scheduling of the different pods as well as the same pod. It is implemented through software defined network technology. Simulation results show that the bisection bandwidth of our strategy is higher than state-of-the-art mechanisms.