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Abstract 
 

Software Defined Network (SDN) realizes management and control over the underlying 
forwarding device, along with acquisition and analysis of network topology and flow 
characters through south bridge protocol. Data path Identification (DPID) is the unique 
identity for managing the underlying device, so forged DPID can be used to attack the link of 
underlying forwarding devices, as well as carry out DoS over the upper-level controller. This 
paper proposes a dynamic defense method based on Client-Puzzle model, in which the 
controller achieves dynamic management over requests from forwarding devices through 
generating questions with multi-level difficulty. This method can rapidly reduce network load, 
and at the same time separate attack flow from legal flow, enabling the controller to provide 
continuous service for legal visit. We conduct experiments on open-source SDN controllers 
like Fluid and Ryu, the result of which verifies feasibility of this defense method. The 
experimental result also shows that when cost of controller and forwarding device increases by 
about 2%-5%, the cost of attacker’s CPU increases by near 90%, which greatly raises the 
attack difficulty for attackers. 
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1. Introduction 

Software Defined Networks (SDN) is the most popular emerging technology with rapid 
development in the field of network communication in recent years. SDN is regarded as one of 
the core technologies for next generation of the Internet [1] due to the disruptive change it 
brings to current network architecture. The nature of SDN is changing the current completely 
closed network architecture with integration of software and hardware, while at the same time 
opening up the programming ability of network to users which could decouple business from 
network [2][3]. Fig. 1 shows the three-layer architecture of current Openflow-based SDN 
which achieves widespread adoption. It shows that the controller is the core of the SDN 
network because it fulfills user customization of application layer through the north bridge 
(REST API, etc.), and interacts with data forwarding layer through the south bridge 
(OpenFlow, OF-CONFIG, etc.) [4]. 

 
Fig. 1. Three-layer logical architecture of SDN 

 
The south-bridge protocol is divided into two types, which are responsible for network 

control and network management, respectively. As shown in Fig. 1, the OpenFlow protocol is 
responsible for network control, while OF-CONFIG protocol is used for network management 
and device configuration. In a typical OpenFlow-based SDN network, OpenFlow is the only 
way for controller to complete issue of command for data forwarding and update of flow table, 
as well as pushing the topology information of forwarding facility. It is also the core channel 
for SDN to realize centralized control. SDN allocates a 64-bit DPID (Data Path Identification) 
for each forwarding device, which is used by the controller to update information and manage 
device during operations such as querying some information and issuing flow table. Therefore, 
DPID is the unique identifier for a forwarding device, and the change of DPID’s value will 
make controller identify a newly added forwarding facility in the network [5]. 

In 2013, Shin [6] and Dover [7][8] studied the message mechanism between controller and 
forwarding device in Floodlight, and found that if the forwarding device sends a 
FEATURES_REPLY message with a new DPID to the controller again after completion of 
the handshake, the controller will add a new item in the flow table. This finding indicates that 



848                                            Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN 

the changing the DPID value could make the controller add new record in flow table. With this 
vulnerability, the attacker could use a host to simulate large amount of forwarding devices to 
establish connection with the controller by creating new DPID to generate a 
FEATURES_REPLY message and sending it to the controller just after the handshake. With 
those attack methods shown above, memory space of the controller will be fully filled after a 
period of time, along with its CPU being almost occupied with full load. Thus the controller 
could not provide service for legal forwarding device any more, causing DoS (Denial of 
Service) attacks. 

In both BlackHat 2014 and BlackHat 2015, Gregory [9][10] proposed and proved that the 
controller can not distinguish between two forwarding facility which have same hardware 
address (datapath_id and MAC address). Therefore, the attacker can utilize any host to 
simulate a forwarding device which has the same hardware characters with target device, and 
use it to send messages such as HELLO and FEATURES_REPLY to the controller, thus 
breaking the connection between the device and the controller. 

In order to defend against the identity forgery attack described above, an optional security 
mechanism based on TLS protocol is proposed for the communication channel between 
controller and forwarding device in the subsequent version of OpenFlow v1.3 specification. 
This mechanism supports two-way authentication and encryption for communication, which, 
however, still has some shortages, because users are allowed to close the function of 
authentication and encryption, and no corresponding measure is designed to deal with the 
situation where the secure authentication fails [2][11]. Moreover, as most vendors worry about 
the effect of authentication and encryption on the system performance, the TLS functionality 
is disabled on default. Instead, a simple TCP handshake connection is used [12]. For those 
controllers with TLS encryption (e.g. Ryu), the TLS encryption is realized with OpenSSL, 
which has exposed many security vulnerabilities that attacker can use to bypass the encryption 
[13].  

Based upon the above problems and the research foundation on them, we proposes a 
dynamic defensive mechanism to defend against identity forgery attack which utilizing the 
DPID of forwarding device to cheat SDN controller. There are two main differences between 
our method and existing methods: (1)Methods employing TLS or any other authentication 
mechanism cannot address DoS attack, because attackers can launch identity forgery or DoS 
attack against the authentication service because authentication does not eliminate the 
possibility of identity forgery or DoS attack, but just migrates the attack to other objects. (2) 
Current methods are static, while our approach is dynamic which improve the difficulty of 
attacks greatly. 

This mechanism is based on Client-Puzzle, and has the following three advantages:  
(1) For DPID forgery attack on forwarding device, which is proposed by Shin [6] and Dover 

[7], we can precisely identify forged DPID with the mechanism proposed in this paper to 
maintain the stability of current link. 

(2) For DoS attack on controller caused by DPID identity forgery proposed by Dover [8] 
and Gregory [9], this mechanism is able to quickly reduce the network load, and at the same 
time separate the attack stream from the legal stream in all network flows, which enables the 
controller to serve the legal requests without interrupt. 

(3) The defense for the above attacks would only increase a little in controller’s load, but 
augment greatly in attacker’s price, thus making the attacks more difficult. 

This paper is organized as follows: the first part introduces the related work of this paper; 
the second part conducts an abstract analysis of the threat model for DPID attack; the third part 
describes the principle for dynamic defense based on Client-Puzzle model, along with its 
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execution flow; the fourth part gives a detailed exposition on the algorithm and its 
corresponding analysis of the Client-Puzzle model; the fifth part tests effect of the model; the 
last part concludes this paper, and discusses the future work. 

2. Related Work 
For security of the channel between SDN forwarding device and SDN controller, Pedigree 
[14] proposed a method of flow label in 2009. This method firstly labels all data flow 
forwarded to the controller, which would check legitimacy of the flow according to the labels. 
It would check whether data resource is under unauthorized visit, and whether matching with 
white list is successful. Whenever illegal data flow is detected, the corresponding flow rules 
are deployed in the forwarding device to filter such a flow. Although the method of flow label 
is able to solve problems such as unauthorized visit, escape and propagation of malicious code, 
it can not protect the resource under the condition that SDN has not classified different 
authority for different resource yet. Furthermore, the flow labels would increase the load of 
controller, which is then turned into bottleneck of the network. 

In 2011, Yao [15] proposed a method based on original address determination to prevent 
the denial of service attack on SDN controller. This method uses VAVE (Virtual source 
Address Validation Edge) to identify IP Spoof. It takes advantage of traffic analysis and 
dynamic strategy update of SDN to redirect flows that do not conform to the predefined 
strategy of forwarding equipment to the controller, and let the controller to conduct legitimacy 
judgment of their original addresses. At the same time, the controller will dynamically update 
the strategy of forwarding equipment to limit reception of data flow with illegal original 
address. This method can reduce attack flow on the controller to some extent, but there are two 
shortcomings: (1) It relies on the illusion that DoS attack would not come from forwarding 
device, while in fact forwarding device in SDN is usually emulated by virtualization software 
(NFV), which means that attack flow might come from forwarding device controlled or 
simulated by attacker; (2) It greatly increases the load of the controller which on one hand 
needs to conduct legitimacy judgment of original IP addresses, while on the other hand needs 
to update strategies of all switches in the domain, leading to large amounts of load and 
bandwidth overhead. 

With respect to the problem of VAVE controller as a bottleneck, ident++ [16] protocol can 
be used to reduce the load of controller, which would allocate tasks such as security 
authentication and policy updates to forwarding devices and hosts. Ident++ sets up a third 
party channel among hosts, forwarding devices, the controller and servers. When a host 
initiates visit request to a server through forwarding devices, the request is redirected to the 
controller, which would then use ident++ to require additional authentication information 
from the host and the server. If the authentication is successful, the controller would then send 
flow rules for forwarding packets to the forwarding devices which is responsible for 
forwarding requests from the host. There are also two disadvantages: (1) While it solves the 
problem of the controller being a bottleneck to some extent, it requires communication 
channel between the controller and the server, which is not included in the original SDN 
architecture; (2) It expands the attack surface with additional use of third party channels 
between hosts, forwarding devices, the controller and servers, and ident++ may introduce new 
security risks. 

In 2014, Liyanage [17] took a detailed analysis on the threat model of security channel 
between the controller and the forwarding equipment, and pointed out that the security channel 
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is under the threats such as DoS attacks, replay attacks and IP Spoofing. Upon the analysis, He 
put forward the SDMN (software defined mobile networks, sdmn) oriented defense 
mechanism, which employs defensive strategies with very high practicability. However, this 
method cannot be directly applied to SDN, because SDN is not equipped with some of 
SDMN’s characters like high mobility and cellular message encryption, and it would make 
controller become a performance bottleneck when applied in SDN. 

For the disadvantages of the above posterior defense methods based on flow check, load 
migration or attack detection, the researchers studied the authentication mechanism among 
forwarding devices, users and the controller. In 2014, Dangovas [18] realized a 
Floodlight-based system called AAA to conduct authentication, authorization and 
measurement in SDN, thus enhancing the security of SDN network. AAA can carry out 
authentication and traffic binding for OpenFlow switches and users. Authentication is 
completed by RADIUS server, and access control is achieved with LDAP (Lightweight 
Directory Access Protocol) protocol. Nonetheless, this method imposes a large impact on 
network performance. Besides, it is not clearly defined how the access is implemented using 
LDAP. 

In regards to high cost of AAA, Toseef [19] proposed C-BAS, a method for authentication 
and authorization management in cross-layer model. C-BAS is developed on basis of AAA, 
and it supports functions like identity authentication with user certificates and management for 
role authorization. Therefore, it can counter attacks against AAA, and improve scalability and 
performance in distributed management. 

With the above analysis, we can know that the research path of defense for the security of 
controller and the secure channel between controller and forwarding device goes as ‘attack 

detection→load migration→identity authentication’. The attack detection has the problem of 
uncontrollable false positive rate and false negative rate, the load migration is hindered by the 
performance bottleneck, and the identity authentication just migrates the attack load, and did 
not confront such an attack. The CP-based SDN dynamic defense for SDN south bridge 
presented in this paper can reduce network attack traffic, which helps filter out legitimate 
access flow. On the other hand, it can increase cost for the attacker, which greatly increased 
difficulty of the attack. 

3. Attack Models and Hypotheses 

3.1 Attack Models 
In order to describe our method more clearly, we give the list of symbols used for this work, as 
shown in Table 1. 

Table 1. Symbols for this work 

Name Description 

DPID 
the unique identifier of forwarding device, usually composed of the 48-bit 
MAC address of the device and a 12-bit prefix 

1,2,...{ }iC c ==  the set of controllers 
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1,2,...{ }iA a ==  the set of attackers 

1,2,...{ }iS s ==  the set of forwarding devices 

V  
the number of connection request accepted by controllers from attackers and 
forwarding devices in a limited time 

R  the resource of controllers 

L  the length of buffer queue for flow table provided by controller C  

i
lifecycleT  the life cycle of the i -th item in flow table 

RTTτ  
the time for heartbeat packets which refers to the round-trip time for 
connection maintaining packets to travel around between the controller and 
its connected forwarding devices. 

averageτ  the average time for legal devices to solve questions 

iP  puzzle  is represented by iP , which is composed of several sub puzzle− s. 
[ ]iP j  stands for the j -th sub puzzle−  of iP . { [1], [2],..., [ ]}i i i iP P P P m=  

iM  i -th execution of model M , which means that i -th forwarding device ( iA  or 

iS ) requests for connection with C  

d
iM  

d -th message in i -th execution. For example, the first step of models for 
forwarding device ( iA  or iS ) to request for connection with C , so 1

iM  is 
/i iA S C→ , 2

iM  is /i iC A S→ , etc. 

Z i< >  i -th bit of bit sequence Z  

,Z i j< >  sub-sequence of bit sequence Z  between i -th bit and j -th bit 

h  hash function such as MD5, with its length as l  

g  times of hash operations per second conducted by the attacker 

The attacker can forge DPID to carry out the above two types of attack on forwarding 
device and controller, respectively. A 5-tuple is defined to represent DPID attack model: 

, , , ,C A S V R< > , in which :V A S C∪ →  shows a mapping, indicating the number of 
connection request accepted by controllers from attackers and forwarding devices in a limited 
time, maxV  is the maximum number of connection request that controllers can accept, 

{ , }i
lifecycleR L T=  is the resource of controllers. 
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According to the above two types of attack using forged DPID which are proposed by 
Shin [6], Dover [7][8] and Gregory [9], the DPID identity forgery attack can be abstracted into 
the following two models. 

 
(1) Model1: Attack Model for Forwarding Device 
For a legal forwarding device iS  with DPID value as dpid

iS , iS  has set up connection with 

controller iC , and 
iC maxV V≤ , .

iC maxL R L≤ . At this time, attacker iA  virtualizes a 

forwarding device kS  which satisfies dpid dpid
k iS S= , and uses kS  to request for connection 

with iC . The completion of handshake between kS  and iC  would force iS  to go offline, thus 
accomplishing the attack against legal forwarding device, which is shown in Fig. 2. 
 

iC

kS

iS

dpid dpid
k iS S=

Offline

 
Fig. 2. Attack model for forwarding device 

 
(2) Model2: Attack Model for Controller 
Legal forwarding device iS  has set up connection with controller iC . For iC , the attacker 

creates scripts to forge large amounts of fake forwarding devices 1,2,...kS = , and 1,2,...
dpid
kS =  is a 

randomly generated 64-bit sequence. Then the attacker uses 1,2,...kS =  to create connection with 

iC  one by one. When the value of k is large enough to satisfy .
iC maxL R L> , the flow table of 

iC  would overflow to make iS  offline, as shown in Fig. 3. 
 

iC

1kS

iS

Offline

2kS

nkS

…
…

.
iC maxL R L>

Overflow

 
Fig. 3. Attack model for controller 

 
When applying these two attack models described above to different controllers (e.g., 

Floodlight, OpenDaylight, Ryu, etc.), details of the attack differs. For example, when applying 
the models to Floodlight, it is necessary to set up connection first, at the end of which value of 
DPID should be modified to make flow table of the controller overflow. 
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3.2 Hypotheses 
Client-Puzzle dynamic defense requires forwarding devices and attackers to solve the 
problems generated by the controller, so we need put forward hypotheses on their transaction 
processing logic and their performance. 
Hypothesis 1: Forwarding devices and attackers would process data packets in the same 
order as their reception. 

It means that in a certain period of time, forwarding devices may receive multiple 
problems from controllers, then they solve problems in the order of that ‘what comes first 
would be handled and relied first’. 
Hypothesis 2: Time for forwarding devices to solve the PUZZLE is stable. 

It shows that if a forward device solves two problems of equivalent level of difficulty in 
twice, the time involved would not differ obviously. As in SDN, forwarding devices are only 
responsible for looking up the table and forwarding the data, so the CPU usage is relatively 
stable, which means this hypothesis is easy to meet. 
Hypothesis 3: The attackers do not have unlimited computing ability or storage 
capacity. 

The attackers cannot solve any difficult problems in a very short period of time. Because 
when the attacker has infinite computing ability, all of the security defenses would fail. 

4. Client-Puzzle Defense Model 
The model of Client-Puzzle originates from a paper that Juels [20] published in 1999 

about using encryption algorithm to solve the problem of semi-connection attack, and [21-24] 
improved this method. The idea proposed can be summarized as follows: when a client 
requests for a connection, the server would generate a question which would be sent to the 
client for solution; the client would send the answer back to the server for verification after 
solving that problem. If the answer is successfully verified, the following interactions would 
continue; otherwise there would not be any subsequent interactions. The purpose of this 
method is to make solving the client-side question more difficult than server-side validation, 
raising the level of difficulty for the attackers. 

For the above DPID attack model which is made up of 5-tuple, the process for controllers 
under Client-Puzzle model to deal with the connection form forwarding devices is shown in 
Algorithm. 1 which follows the presentation style of Kaiwartya [25-26]. 

(1) When controller C  receives connection request from forwarding device 2S , it would 
extract DPID value of 2S  from the message msg , and look up the table. If a forwarding 
device 1S  with the same DPID is found to have connected to C , C  would generate a 
question puzzle , and send it to 2S . Then 2S  would solve the question and send the 
solution  back to C  for verification. After verifying the correctness of solution , C  would 
calculate the time interval between the sending of puzzle  and the receiving of solution . If 
the time interval is greater than RTTτ  which is the time for heartbeat packets, C  would 
determine that DPID value is illegal. If the time interval is no large than RTTτ , C  would 
believe that 1S  has dropped offline, and try to establish connection with 2S  ( 1 2S S= ).  

(2) When C  has received a large number of requests from different forwarding devices 
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1,2,...kS =  (their DPID value is shown in []DPID.recv ) in a short period of time, and the 
number of requests goes beyond the preset threshold, then C  is considered to be under attack. 
At this time, C  would generate a series of questions expressed as []puzzles , and send them 
to 1,2,...kS =  respectively. 1,2,...kS =  should solve []puzzles  one by one in a timely order, and 

each k iS =  sends solutions[i] back to C . After verifying the correctness of solutions[i] , 
C  would record the time interval from sending [ ]puzzles i  to receiving solutions[i] . If the 
time interval is greater than averageτ  which is the average time for legal devices to solve 

questions, k iS =  is considered as illegal forwarding device. 
Algorithm. 1: CP-HANDLER 
Notations 

DPID.recv: the value of DPID which received from switch 
DPID.table: the list of DPIDs 
puzzle: the data structure of challenges constructed by the controller 
solutions: the data structure of solutions for challenges sent by the controller 
Threshold: the value of σ  set by users 
T: the data structure of time recorder 

Input    DPID.recv, Threshold 
Process 

1. initiallization 
DPID.recv = recvFromSwitch(msg).getDPID() 
OFInitialization() //OpenFlow Protocol initialization 

2. if (DPID.recv == lookup(DPID.table)) then 
puzzle = generate(param1,param2,…) 
T.set() 
send(puzzle) 
… 
recv(solutions[]) 
T.stop() 
if (verify(solutions[]) && T.stop – T.set ≤ RTTτ && RTT lifecycleTτ < ) then 
        Drop DPID.recv and use the previous   
Else 

return DPID.recv //the DPID.recv is illegal 
end if 

end if 
3. if (num(DPID.recv[])＞Threshold) then  //under attack 

puzzle[] = generate(param1,param2,…) 
for each puzzle ∈ puzzles[] 
T[i].set() 
send(puzzle) 
… 
recv(solutions[]) 
T[i].stop() 
if ((T.stop – T.set))＞ averageτ  && verify(solutions[i]) 

Drop DPID.recv[i] 
Else 
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OFExec()//execute the openflow protocol 
end if 
end for 

end if 
Output: DPID.recv //illegal value of DPID 
 

 
If puzzle  in the above stage ‘(2)’ is difficult enough for attacker to solve it in time more 

than RTTτ , the attack threatening forwarding devices is defended. Because the time for 
controller and forwarding device to exchange the heartbeat packets is RTTτ , even if an attacker 
forges DPID, he/she cannot respond to controller in RTTτ  due to the lack of ability to solve 

puzzle  within RTTτ , while the legal forwarding devices can respond in RTTτ , thus enforcing 
an accurate judgment on the legitimacy of DPID. 

The above stage ‘(3)’ alleviates the attack threatening the controller. When an attacker's 
computing power is the same as that of a legal forwarding device, the time required by the 
attacker to respond to the controller is larger than averageτ  because there are a large number of 

[]puzzles  to solve in a short time. Under this condition, the defense can not only reduce the 
attack flow on the controller, but also accurately determine the legal forwarding devices in 

[]DPID.recv , and then only forwarding devices forged by the attacker are needed to be dealt 
with. When the attacker has far more computing power than that of the forwarding device, we 
can increase the difficulty of []puzzles  to meet | ()- () | >i i averageT .stop T .set τ σ− . At this 
time, time used by the attacker could not stay as stable as time used by the forwarding device 
(because the attacker’s computing power is far more than that of a legal forwarding device, 
which means that when the number of []puzzles  changes, time used by the attacker would 
change too, while the time used by a forwarding device is unchanged as it only need to solve 
single puzzle ), leading to the difference between the time used by the attacker and the time 
used by the forwarding exceeding preset threshold σ . Under this condition, [ ]DPID.recv i is 
considered as forged by the attacker. Utilization of this method is also able to defend against 
denial of service attacks caused by overflow of the controller’s flow table. 

5. Design of Client-Puzzle Defense Model 

5.1 SUB-PUZZLE Generation 
Upon definition of 5-tuple and description of symbols in table 1, we give the process of SUB-PUZZLE 
Generation. 

①  Controller C  uses parameters like time stamp t  and hash function h  to work 
out [ ]ix j  with length of l ，that is, 1[ ] ( , , )i ix j h t M j= ; 

② Controller C  uses hash function h  again to compute [ ]ix j to get [ ]iy j , that is, 

[ ] ( [ ])i iy j h x j= ; 
③ Controller C selects a sub-sequence [ ] 1,ix j k l< + >  from [ ]ix j , and combines it 

with [ ]iy j . Thus, a sub puzzle−  is finally generated. 
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The concrete execution process is shown in Fig. 4. 
 

1, ,it M j

()h

[ ]ix j [ ] 1,ix j k l< + >[ ] 1,ix j k< >

[ ]iy j

sub puzzle−

①

②

①②

③ ()h

 
Fig. 4. Generation process for SUB-PUZZLE 

 

5.2 SUB-PUZZLE Solving 

The purpose of generating sub puzzle− s is to request iA  or iS  to work out the rest bits 
of [ ]ix j , that is, [ ] 1,ix j k< >  based on the known [ ]iy j  and [ ] 1,ix j k l< + > , while the 
controller is easy to verify using the complete [ ]ix j . Of course the sub-sequences of [ ]ix j  
can be either continuous or discrete. For sub puzzle− : { [ ], [ ] 1, }i iy j x j k l< + > , its 
solution is [ ] 1,ix j k< > , as shown in ‘③’ of Fig. 4. 

The steps for forwarding devices to work out [ ] 1,ix j k< >  with received 

{ [ ] 1, [ ]}i ix j k l y j< + > +  are as follows: 

Known: length of [ ]ix j , hash function h , [ ]iy j  and [ ] 1,ix j k l< + >  
Target: [ ] 1,ix j k< >  

1.  Set all bits of [ ] 1,ix j k< >  as 0; 
2.  Compute ( [ ] 1, )ih x j k< >  to ' [ ]iy j ; 
3.  If ' [ ] [ ]i iy j y j= , get the solution of this SUB-PUZZLE; 
4.  If ' [ ]! [ ]i iy j y j= , modify the last bit [ ]ix j k< >  of [ ] 1,ix j k< >  from 0 to 1, and 
turn to step 2; 
5.  Repeat the steps until ' [ ] [ ]i iy j y j= ，then we will get the solution of SUB-PUZZLE. 

According to the above steps, the worst case is that S  could work out [ ] 1,ix j k< >  after 

2k  hash operations (the average time is 12 / 2 2k k−= ). Therefore, this problem is equivalent 
to a lookup in a space of 2k , and it only differs in that each lookup is replaced with hash 
operation. 

5.3 PUZZLE Generation 

Controller C  would combine the above m  sub puzzle− s so as to get iP , and then send 

iP  to iA  or iS . The solution of iA  or iS  is also the combination of the above m  solutions. 
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So for iP , the computational complexity of the controller C  can be divided into two 
stages: the complexity of the construction phase is 2 m⋅  hash operations, and the complexity 
of validation phase is m  hash operations. The computational complexity for iA  or iS  is: it 

needs 2km×  hash operations in the worst case, and 12 / 2 2k km m −× = ×  hash operations on 
average. 

5.4 Security Analysis 
(1) Difficulty of PUZZLE 
For the attacker model for switches, when the attacker iA  is requesting for connection 

with C , he/she needs to receive and solve the puzzle  sent by C . On average, the attacker 
needs 12km −  hash operations. So when the difficulty of puzzle  meets the following 

relationship, the attacker would fail under Client-Puzzle defense model: 
12k

RTT
m

g
τ

−

> , that is, 

12
RTT

k
gm τ

−> . 

For the attack model for controllers, when iA  or iS  requests connection with C , C  

would allocate a small amount of storage i
slotMem  from CMem  for interaction of puzzle . 

Assume that C  is able to allocate memory for n  iA  or iS , then C
i
slot

Memn
Mem

= . 

① When attacker iA  with the similar computing power with legal forwarding devices 
generates n  different DPID to attack controller C , the hash operations needed by the attacker 

is 12kn m −× . When 
12k

C
averagei

slot

Mem m
Mem g

τ
−⋅ ⋅
>

⋅
， that is, 12

i
average slot

C k

g Mem
m Mem

τ
−

⋅ ⋅
⋅ > , 

the DoS attack against controller C  would fail; 
② When attacker iA  with far more computing power than legal forwarding devices is 

conducting the attack, any rDPID  which satisfies | ()- () | >r r averageT .stop T .set τ σ−  should 
be fake DPID  forged by the attacker. Filtering n  DPID  would also make DoS attack 
against controller C  fail. 

(2) Storage Space of PUZZLE 
According to characteristics of one-way hash function, when the length of sub-sequence 

chosen from [ ]ix j  is 64-bit, a dictionary-based attack can be defeated. When the length of 

[ ]iy j  is 64-bit, the hash function has only single solution, which would not conflict. 
Therefore, the length of puzzle  should be no more than 16 m⋅  bytes. 

In addition, as controller C  stores nothing about the puzzle  except timestamp, C  

needs to execute m  times of 1[ ] ( , , , )i ix j h s t M j=  to verify whether received solution is the 
same as calculated by C  after receiving the solution of puzzle . Therefore, the order of 
verification is not required, and randomly choosing the solutions of sub puzzle− s to verify 
can  reduce the number of verification. 
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6. Test and Evaluation 
This section tests and evaluates the feasibility and overhead of Client-Puzzle dynamic 

defense method. For feasibility test, we choose open-source Fluid as platform for controllers 
and forwarding devices. For performance test, we use Ryu controller and Mininet simulation 
platform. The choice of lightweight controller Fluid as the feasibility test platform is due to 
that Fluid is a lightweight open-source controller without complex business processing logic 
of commercial controllers (e.g., Floodlight) such as QoS and load balance, and can therefore 
focus the test on target. On the other hand, choosing Fluid can reduce the complexity of 
prototype system. Selecting Ryu (v3.6) and Mininet (v2.2.1) as the performance test platform 
is due to that Ryu is an open-source commercial controller developed in Python, and not 
developed based on third-party framework (e.g., OpenDaylight is developed based on OSGi 
framework), which can reduce the impact of third-party framework, and improve 
practicability of the test. On the other hand, Mininet can simulate SDN networks with different 
topologies, and can realize seamless migration from simulation environment to real network, 
which facilitates the practical application of Client-Puzzle dynamic defense method. The 
parameters for test environment is listed in Table 2. 

 
Table 2. Parameters for test environment 

Target Configuration 
Fluid vm Intel Core i7-2600 @3.40GHz, 1GB 

memory, 32-bit Ubuntu12.04 Open vSwitch 2.3.1 vm 
Ryu 3.6 vm Intel Core i7-2600 @3.40GHz, 1GB 

memory, 32-bit Ubuntu14.04 Mininet 2.2.1 vm 

VMware11.1.0 
Intel Core i7-2600 @3.40GHz, 8GB 
memory, 64-bit Windows7 SP1 Ultimate 
64-bit 

6.1 Test for Feasibility 
We use C++ to implement the MD5 (140 lines) algorithm as the hash operation function. 

We then add the Client-Puzzle dynamic defense method into source file tls.cc under directory 
\libfluid_base\fluid of controller Fluid, and recompile the controller. After that, we modify the 
response module of Open vSwitch to add a Client-Puzzle calculation module. In such 
execution environment, the time of hash operations tested is about 105 times per second. 

 
(1) Feasibility test for Model 1 

According to the constraint 12
RTT

k
gm τ

−> , we set 8m = . Fluid is used as controller C , 

host installed with Open vSwitch is used as forwarding device S . The attacker A  is also 
simulated using host with Open vSwitch installed. Network topology is shown in Fig. 5(A). 
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Fig. 5. Network topology for feasibility test 

 
Before the attack,  has normal communication with . The attacker uses Python script 

(sdn-evilswitc.py) to generate HELLO request packet with the same DPID as targeted host. 
The results in Fig. 6 show the impact of CP model on attack model 1. It can be clearly 
observed that C’s communication with  would break up without deployment of CP 
(Client-Puzzle) dynamic defense (in Non-CP model), and when enforcing the protection (CP 
model), normal communication between  and  would stay unaffected with information 
interaction after the attack. 

 

 
Fig. 6. Prompting messages during feasibility test for attack model 1 

 
(2) Feasibility test for Model 2 
For attack model for the controller, there are two cases regarding relationship between the 

computing power of the attacker and the forwarding device, so there are also two cases about 
the difficulty : 
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Based on the above constraints, we set: 55 10g = × , 16k = , 8m = , averageτ =3s, 
i
slotMem =256Byte, σ =10ms, CMem =14KBbyte. 

We still use Fluid and Open vSwitch to set up the testing network, whose topology is 
shown in Fig. 5(B). To simulate the different cases regarding the difference of the computing 
power between the attacker and the forwarding device, we simulate the attacker by installing 
Open vSwitch on hosts with Intel Core i7 equipped with single core, 3.4 GHz frequency and 
1GB of memory and hosts with Intel Core i7 equipped with dual cores, 3.4 GHz frequency and 
8 GB of memory, respectively. Before the attack, C  communicates normally with S . The 
attacker uses Python script (sdn-controllerflood.py) to generate large amounts of OpenFlow 
HELLO request packets with the random DPIDs. The prompting messages shown during the 
test is consistent with in Fig. 7. Fig. 8 shows the difference of CPU load before and after use of 
method proposed in this paper, and the attack begins at 20th second.  

The results depicted in Fig. 7 show that when CP model is enabled, not only the normal 
communication between C  and S  is not affected, but also the controller's CPU and memory 
load would decrease after a period of increase. As it can be observed that in Non-CP model, 
the controller's CPU load increases gradually after a period of continuous attack, and finally 
gets close to 100%, at which time the legitimate requests would not get timely responses, so 
the normal communication between controller C  and S  would break up. With the 
knowledge of this paper, it is easy to discover that the increase of CPU and memory load is due 
to generating large amounts of puzzle s in a short period of time, and the ability to distinguish 
legal DPIDs from fake DPIDs makes the subsequent communication unaffected by forged 
DPIDs, so the load would gradually go down. It should be pointed out that the number of 
DPIDs is not enough for occupying all of controller Fluid’s memory space in this paper, so 
CPU utilization could not reach close to full load, and we can only observe the changing curve 
of memory usage. 
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Fig. 7. Changing curve of controller’s CPU and memory load 

6.2 Test for Performance 
We use Python to re-implement the MD5 algorithm and Client-Puzzle dynamic defense 

module in feasibility test, and we choose SDN controller Ryu implemented in Python as the 
controller for performance test. We modify the function OpenFlowController::server_loop() 
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in file Controller.py under directory Ryu/controller, and add dynamic defense module in it. 
The topology for performance test is shown in Fig. 8. 

 

 
Fig. 8. Topology for performance test 

 
Performance test contains three aspects about the performance change before and after 

adding CP module in the controller, the forwarding device, and the attacker. It proceeds as 
follows: ① Using Mininet to simulate SDN network with 100 forwarding devices and 500 
hosts, along with Ryu as its controller. Using commad pingall in Mininet to connect the whole 
network; ② Using Open vSwitch equipped with CP module as the object of performance test 
for forwarding device , which is remotely connecting to controller ; ③ Using a copy of 

 as the object of performance test for attacker , and executing attack script to begin test at 
20-th second after the connection of network. The results are shown in Fig. 9. 

The results in Fig. 9(A) indicate that CPU usage differs in Non-CP model and CP model, 
with the former having a short rise after the attacker initiating the script, while the latter having 
stabilized high CPU usage due to its busy dealing with too many fake DPIDs produced by the 
attacker. Although the memory usage is relatively low, it changes in the similar way with CPU 
usage. Fig. 9(A) has similar changing curve with that in Fig. 8 with some different details, 
mainly because Fig. 8 shows the changing curve for lightweight controller Fluid, while Fig. 
9(A) shows the changing curve for commercial controller Ryu.  

The results in Fig. 9(B) clearly convey that our CP model has little effect on the 
performance of switches . As Ryu which is the controller used in performance test inherently 
brings memory release mechanism, its memory usage in Non-CP model would gradually go 
down. After the attacker launches the attack at 20-th second, the CPU usage and memory load 
of forwarding device in CP model would go up first, followed by a gradual decrease. When CP 
model is not enabled, as the attacker has generated large amounts of fake DPIDs in a short 
period of time, legal forwarding device is forced to lose connection due to processing delay of 
the controller, so instead, CPU and memory utilization will decrease.  

The results in Fig. 9(C) indicate that CP-based dynamic defense could significantly 
increase the attacker's load, raising the cost of the attack. In Non-CP model, the attacker needs 
simply to generate fake DPIDs, so the CPU and memory usage would not fluctuate. While in 
CP model, the CPU and memory usage would keep high due to a large number of s the 
attacker has to solve. Fig. 9(A) to 9(C) indicates that when the performance of controller and 
legal forwarding device increases by about 2%-5%, the overhead of the attacker's CPU 
increases by about 90%.  
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From the results depicted in Fig. 9(D), it can be clearly observed that the load of the 
controller is approaching 100% under 12000 forged DPIDs, but the memory usage is growing 
stable gradually due to memory release. The general number of forwarding devices in current 
data center network is not more than 5000 (with each forwarding device corresponding to one 
DPID value), so the method proposed in this paper could defend effectively against DoS attack 
on the controller in current network scale. However, as the size of the network increases, the 
performance may become a bottleneck. Therefore, in the future, we can study how to apply the 
CP model in parallel environment to reduce the performance influence of our method on the 
controller and the switch, such as making the controller generate puzzles and verify solutions 
in parallel. 
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Fig. 9. Results of performance test 

6. Conclusion 
In this paper, we studied the DPID forgery attack over the southbound interface of 

Openflow-based SDN controller, and proposed a CP-based dynamic defense method with 
regard to attack on forwarding devices and DoS attack on controllers using DPID identity 
forgery. This method can on one hand reduce the network attack flow and filter out the legal 
flow, on the other hand increase the overhead of attacker to raise the difficulty for the attack. 
The dynamic defense in this paper uses the experience of MTD (move target defense). Future 
work is the research into how to combine MTD with dynamic programmability of SDN, and 
apply that to defense for north bridge of SDN.  
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