
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, Feb. 2017 846
Copyright ⓒ2017 KSII

A Dynamic Defense Using Client Puzzle for
Identity-Forgery Attack on the

South-Bound of Software Defined
Networks

Zehui Wu1, Qiang Wei1, Kailei Ren1 and Qingxian Wang1

1 State Key Laboratory of Mathematical Engineering and Advanced Computing
Zhengzhou, Henan 450001 - China

[e-mail: wuzehui@foxmail.com, xdweiqiang@163.com, yoyoh_h@163.com, wangqingxian2015@163.com]
*Corresponding author: Zehui Wu

Received May 9, 2016; revised October 12, 2016; accepted November 29, 2016;

published February 28, 2017

Abstract

Software Defined Network (SDN) realizes management and control over the underlying
forwarding device, along with acquisition and analysis of network topology and flow
characters through south bridge protocol. Data path Identification (DPID) is the unique
identity for managing the underlying device, so forged DPID can be used to attack the link of
underlying forwarding devices, as well as carry out DoS over the upper-level controller. This
paper proposes a dynamic defense method based on Client-Puzzle model, in which the
controller achieves dynamic management over requests from forwarding devices through
generating questions with multi-level difficulty. This method can rapidly reduce network load,
and at the same time separate attack flow from legal flow, enabling the controller to provide
continuous service for legal visit. We conduct experiments on open-source SDN controllers
like Fluid and Ryu, the result of which verifies feasibility of this defense method. The
experimental result also shows that when cost of controller and forwarding device increases by
about 2%-5%, the cost of attacker’s CPU increases by near 90%, which greatly raises the
attack difficulty for attackers.

Keywords: Cyber Security, Software Defined Networks, Southbound APIs, Dynamic
Defense

This research was supported by the National High Technology Research and Development Program of China
(Grant NO. 2012AA012902) and National Science Fund for Distinguished Young Scholars (Grant NO. 61402526).

https://doi.org/10.3837/tiis.2017.02.012 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 847

1. Introduction

Software Defined Networks (SDN) is the most popular emerging technology with rapid
development in the field of network communication in recent years. SDN is regarded as one of
the core technologies for next generation of the Internet [1] due to the disruptive change it
brings to current network architecture. The nature of SDN is changing the current completely
closed network architecture with integration of software and hardware, while at the same time
opening up the programming ability of network to users which could decouple business from
network [2][3]. Fig. 1 shows the three-layer architecture of current Openflow-based SDN
which achieves widespread adoption. It shows that the controller is the core of the SDN
network because it fulfills user customization of application layer through the north bridge
(REST API, etc.), and interacts with data forwarding layer through the south bridge
(OpenFlow, OF-CONFIG, etc.) [4].

Fig. 1. Three-layer logical architecture of SDN

The south-bridge protocol is divided into two types, which are responsible for network

control and network management, respectively. As shown in Fig. 1, the OpenFlow protocol is
responsible for network control, while OF-CONFIG protocol is used for network management
and device configuration. In a typical OpenFlow-based SDN network, OpenFlow is the only
way for controller to complete issue of command for data forwarding and update of flow table,
as well as pushing the topology information of forwarding facility. It is also the core channel
for SDN to realize centralized control. SDN allocates a 64-bit DPID (Data Path Identification)
for each forwarding device, which is used by the controller to update information and manage
device during operations such as querying some information and issuing flow table. Therefore,
DPID is the unique identifier for a forwarding device, and the change of DPID’s value will
make controller identify a newly added forwarding facility in the network [5].

In 2013, Shin [6] and Dover [7][8] studied the message mechanism between controller and
forwarding device in Floodlight, and found that if the forwarding device sends a
FEATURES_REPLY message with a new DPID to the controller again after completion of
the handshake, the controller will add a new item in the flow table. This finding indicates that

848 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

the changing the DPID value could make the controller add new record in flow table. With this
vulnerability, the attacker could use a host to simulate large amount of forwarding devices to
establish connection with the controller by creating new DPID to generate a
FEATURES_REPLY message and sending it to the controller just after the handshake. With
those attack methods shown above, memory space of the controller will be fully filled after a
period of time, along with its CPU being almost occupied with full load. Thus the controller
could not provide service for legal forwarding device any more, causing DoS (Denial of
Service) attacks.

In both BlackHat 2014 and BlackHat 2015, Gregory [9][10] proposed and proved that the
controller can not distinguish between two forwarding facility which have same hardware
address (datapath_id and MAC address). Therefore, the attacker can utilize any host to
simulate a forwarding device which has the same hardware characters with target device, and
use it to send messages such as HELLO and FEATURES_REPLY to the controller, thus
breaking the connection between the device and the controller.

In order to defend against the identity forgery attack described above, an optional security
mechanism based on TLS protocol is proposed for the communication channel between
controller and forwarding device in the subsequent version of OpenFlow v1.3 specification.
This mechanism supports two-way authentication and encryption for communication, which,
however, still has some shortages, because users are allowed to close the function of
authentication and encryption, and no corresponding measure is designed to deal with the
situation where the secure authentication fails [2][11]. Moreover, as most vendors worry about
the effect of authentication and encryption on the system performance, the TLS functionality
is disabled on default. Instead, a simple TCP handshake connection is used [12]. For those
controllers with TLS encryption (e.g. Ryu), the TLS encryption is realized with OpenSSL,
which has exposed many security vulnerabilities that attacker can use to bypass the encryption
[13].

Based upon the above problems and the research foundation on them, we proposes a
dynamic defensive mechanism to defend against identity forgery attack which utilizing the
DPID of forwarding device to cheat SDN controller. There are two main differences between
our method and existing methods: (1)Methods employing TLS or any other authentication
mechanism cannot address DoS attack, because attackers can launch identity forgery or DoS
attack against the authentication service because authentication does not eliminate the
possibility of identity forgery or DoS attack, but just migrates the attack to other objects. (2)
Current methods are static, while our approach is dynamic which improve the difficulty of
attacks greatly.

This mechanism is based on Client-Puzzle, and has the following three advantages:
(1) For DPID forgery attack on forwarding device, which is proposed by Shin [6] and Dover

[7], we can precisely identify forged DPID with the mechanism proposed in this paper to
maintain the stability of current link.

(2) For DoS attack on controller caused by DPID identity forgery proposed by Dover [8]
and Gregory [9], this mechanism is able to quickly reduce the network load, and at the same
time separate the attack stream from the legal stream in all network flows, which enables the
controller to serve the legal requests without interrupt.

(3) The defense for the above attacks would only increase a little in controller’s load, but
augment greatly in attacker’s price, thus making the attacks more difficult.

This paper is organized as follows: the first part introduces the related work of this paper;
the second part conducts an abstract analysis of the threat model for DPID attack; the third part
describes the principle for dynamic defense based on Client-Puzzle model, along with its

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 849

execution flow; the fourth part gives a detailed exposition on the algorithm and its
corresponding analysis of the Client-Puzzle model; the fifth part tests effect of the model; the
last part concludes this paper, and discusses the future work.

2. Related Work
For security of the channel between SDN forwarding device and SDN controller, Pedigree
[14] proposed a method of flow label in 2009. This method firstly labels all data flow
forwarded to the controller, which would check legitimacy of the flow according to the labels.
It would check whether data resource is under unauthorized visit, and whether matching with
white list is successful. Whenever illegal data flow is detected, the corresponding flow rules
are deployed in the forwarding device to filter such a flow. Although the method of flow label
is able to solve problems such as unauthorized visit, escape and propagation of malicious code,
it can not protect the resource under the condition that SDN has not classified different
authority for different resource yet. Furthermore, the flow labels would increase the load of
controller, which is then turned into bottleneck of the network.

In 2011, Yao [15] proposed a method based on original address determination to prevent
the denial of service attack on SDN controller. This method uses VAVE (Virtual source
Address Validation Edge) to identify IP Spoof. It takes advantage of traffic analysis and
dynamic strategy update of SDN to redirect flows that do not conform to the predefined
strategy of forwarding equipment to the controller, and let the controller to conduct legitimacy
judgment of their original addresses. At the same time, the controller will dynamically update
the strategy of forwarding equipment to limit reception of data flow with illegal original
address. This method can reduce attack flow on the controller to some extent, but there are two
shortcomings: (1) It relies on the illusion that DoS attack would not come from forwarding
device, while in fact forwarding device in SDN is usually emulated by virtualization software
(NFV), which means that attack flow might come from forwarding device controlled or
simulated by attacker; (2) It greatly increases the load of the controller which on one hand
needs to conduct legitimacy judgment of original IP addresses, while on the other hand needs
to update strategies of all switches in the domain, leading to large amounts of load and
bandwidth overhead.

With respect to the problem of VAVE controller as a bottleneck, ident++ [16] protocol can
be used to reduce the load of controller, which would allocate tasks such as security
authentication and policy updates to forwarding devices and hosts. Ident++ sets up a third
party channel among hosts, forwarding devices, the controller and servers. When a host
initiates visit request to a server through forwarding devices, the request is redirected to the
controller, which would then use ident++ to require additional authentication information
from the host and the server. If the authentication is successful, the controller would then send
flow rules for forwarding packets to the forwarding devices which is responsible for
forwarding requests from the host. There are also two disadvantages: (1) While it solves the
problem of the controller being a bottleneck to some extent, it requires communication
channel between the controller and the server, which is not included in the original SDN
architecture; (2) It expands the attack surface with additional use of third party channels
between hosts, forwarding devices, the controller and servers, and ident++ may introduce new
security risks.

In 2014, Liyanage [17] took a detailed analysis on the threat model of security channel
between the controller and the forwarding equipment, and pointed out that the security channel

850 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

is under the threats such as DoS attacks, replay attacks and IP Spoofing. Upon the analysis, He
put forward the SDMN (software defined mobile networks, sdmn) oriented defense
mechanism, which employs defensive strategies with very high practicability. However, this
method cannot be directly applied to SDN, because SDN is not equipped with some of
SDMN’s characters like high mobility and cellular message encryption, and it would make
controller become a performance bottleneck when applied in SDN.

For the disadvantages of the above posterior defense methods based on flow check, load
migration or attack detection, the researchers studied the authentication mechanism among
forwarding devices, users and the controller. In 2014, Dangovas [18] realized a
Floodlight-based system called AAA to conduct authentication, authorization and
measurement in SDN, thus enhancing the security of SDN network. AAA can carry out
authentication and traffic binding for OpenFlow switches and users. Authentication is
completed by RADIUS server, and access control is achieved with LDAP (Lightweight
Directory Access Protocol) protocol. Nonetheless, this method imposes a large impact on
network performance. Besides, it is not clearly defined how the access is implemented using
LDAP.

In regards to high cost of AAA, Toseef [19] proposed C-BAS, a method for authentication
and authorization management in cross-layer model. C-BAS is developed on basis of AAA,
and it supports functions like identity authentication with user certificates and management for
role authorization. Therefore, it can counter attacks against AAA, and improve scalability and
performance in distributed management.

With the above analysis, we can know that the research path of defense for the security of
controller and the secure channel between controller and forwarding device goes as ‘attack

detection→load migration→identity authentication’. The attack detection has the problem of
uncontrollable false positive rate and false negative rate, the load migration is hindered by the
performance bottleneck, and the identity authentication just migrates the attack load, and did
not confront such an attack. The CP-based SDN dynamic defense for SDN south bridge
presented in this paper can reduce network attack traffic, which helps filter out legitimate
access flow. On the other hand, it can increase cost for the attacker, which greatly increased
difficulty of the attack.

3. Attack Models and Hypotheses

3.1 Attack Models
In order to describe our method more clearly, we give the list of symbols used for this work, as
shown in Table 1.

Table 1. Symbols for this work

Name Description

DPID
the unique identifier of forwarding device, usually composed of the 48-bit
MAC address of the device and a 12-bit prefix

1,2,...{ }iC c == the set of controllers

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 851

1,2,...{ }iA a == the set of attackers

1,2,...{ }iS s == the set of forwarding devices

V
the number of connection request accepted by controllers from attackers and
forwarding devices in a limited time

R the resource of controllers

L the length of buffer queue for flow table provided by controller C

i
lifecycleT the life cycle of the i -th item in flow table

RTTτ
the time for heartbeat packets which refers to the round-trip time for
connection maintaining packets to travel around between the controller and
its connected forwarding devices.

averageτ the average time for legal devices to solve questions

iP puzzle is represented by iP , which is composed of several sub puzzle− s.
[]iP j stands for the j -th sub puzzle− of iP . { [1], [2],..., []}i i i iP P P P m=

iM i -th execution of model M , which means that i -th forwarding device (iA or

iS) requests for connection with C

d
iM

d -th message in i -th execution. For example, the first step of models for
forwarding device (iA or iS) to request for connection with C , so 1

iM is
/i iA S C→ , 2

iM is /i iC A S→ , etc.

Z i< > i -th bit of bit sequence Z

,Z i j< > sub-sequence of bit sequence Z between i -th bit and j -th bit

h hash function such as MD5, with its length as l

g times of hash operations per second conducted by the attacker

The attacker can forge DPID to carry out the above two types of attack on forwarding
device and controller, respectively. A 5-tuple is defined to represent DPID attack model:

, , , ,C A S V R< > , in which :V A S C∪ → shows a mapping, indicating the number of
connection request accepted by controllers from attackers and forwarding devices in a limited
time, maxV is the maximum number of connection request that controllers can accept,

{ , }i
lifecycleR L T= is the resource of controllers.

852 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

According to the above two types of attack using forged DPID which are proposed by
Shin [6], Dover [7][8] and Gregory [9], the DPID identity forgery attack can be abstracted into
the following two models.

(1) Model1: Attack Model for Forwarding Device
For a legal forwarding device iS with DPID value as dpid

iS , iS has set up connection with

controller iC , and
iC maxV V≤ , .

iC maxL R L≤ . At this time, attacker iA virtualizes a

forwarding device kS which satisfies dpid dpid
k iS S= , and uses kS to request for connection

with iC . The completion of handshake between kS and iC would force iS to go offline, thus
accomplishing the attack against legal forwarding device, which is shown in Fig. 2.

iC

kS

iS

dpid dpid
k iS S=

Offline

Fig. 2. Attack model for forwarding device

(2) Model2: Attack Model for Controller
Legal forwarding device iS has set up connection with controller iC . For iC , the attacker

creates scripts to forge large amounts of fake forwarding devices 1,2,...kS = , and 1,2,...
dpid
kS = is a

randomly generated 64-bit sequence. Then the attacker uses 1,2,...kS = to create connection with

iC one by one. When the value of k is large enough to satisfy .
iC maxL R L> , the flow table of

iC would overflow to make iS offline, as shown in Fig. 3.

iC

1kS

iS

Offline

2kS

nkS

…
…

.
iC maxL R L>

Overflow

Fig. 3. Attack model for controller

When applying these two attack models described above to different controllers (e.g.,

Floodlight, OpenDaylight, Ryu, etc.), details of the attack differs. For example, when applying
the models to Floodlight, it is necessary to set up connection first, at the end of which value of
DPID should be modified to make flow table of the controller overflow.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 853

3.2 Hypotheses
Client-Puzzle dynamic defense requires forwarding devices and attackers to solve the
problems generated by the controller, so we need put forward hypotheses on their transaction
processing logic and their performance.
Hypothesis 1: Forwarding devices and attackers would process data packets in the same
order as their reception.

It means that in a certain period of time, forwarding devices may receive multiple
problems from controllers, then they solve problems in the order of that ‘what comes first
would be handled and relied first’.
Hypothesis 2: Time for forwarding devices to solve the PUZZLE is stable.

It shows that if a forward device solves two problems of equivalent level of difficulty in
twice, the time involved would not differ obviously. As in SDN, forwarding devices are only
responsible for looking up the table and forwarding the data, so the CPU usage is relatively
stable, which means this hypothesis is easy to meet.
Hypothesis 3: The attackers do not have unlimited computing ability or storage
capacity.

The attackers cannot solve any difficult problems in a very short period of time. Because
when the attacker has infinite computing ability, all of the security defenses would fail.

4. Client-Puzzle Defense Model
The model of Client-Puzzle originates from a paper that Juels [20] published in 1999

about using encryption algorithm to solve the problem of semi-connection attack, and [21-24]
improved this method. The idea proposed can be summarized as follows: when a client
requests for a connection, the server would generate a question which would be sent to the
client for solution; the client would send the answer back to the server for verification after
solving that problem. If the answer is successfully verified, the following interactions would
continue; otherwise there would not be any subsequent interactions. The purpose of this
method is to make solving the client-side question more difficult than server-side validation,
raising the level of difficulty for the attackers.

For the above DPID attack model which is made up of 5-tuple, the process for controllers
under Client-Puzzle model to deal with the connection form forwarding devices is shown in
Algorithm. 1 which follows the presentation style of Kaiwartya [25-26].

(1) When controller C receives connection request from forwarding device 2S , it would
extract DPID value of 2S from the message msg , and look up the table. If a forwarding
device 1S with the same DPID is found to have connected to C , C would generate a
question puzzle , and send it to 2S . Then 2S would solve the question and send the
solution back to C for verification. After verifying the correctness of solution , C would
calculate the time interval between the sending of puzzle and the receiving of solution . If
the time interval is greater than RTTτ which is the time for heartbeat packets, C would
determine that DPID value is illegal. If the time interval is no large than RTTτ , C would
believe that 1S has dropped offline, and try to establish connection with 2S (1 2S S=).

(2) When C has received a large number of requests from different forwarding devices

854 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

1,2,...kS = (their DPID value is shown in []DPID.recv) in a short period of time, and the
number of requests goes beyond the preset threshold, then C is considered to be under attack.
At this time, C would generate a series of questions expressed as []puzzles , and send them
to 1,2,...kS = respectively. 1,2,...kS = should solve []puzzles one by one in a timely order, and

each k iS = sends solutions[i] back to C . After verifying the correctness of solutions[i] ,
C would record the time interval from sending []puzzles i to receiving solutions[i] . If the
time interval is greater than averageτ which is the average time for legal devices to solve

questions, k iS = is considered as illegal forwarding device.
Algorithm. 1: CP-HANDLER
Notations

DPID.recv: the value of DPID which received from switch
DPID.table: the list of DPIDs
puzzle: the data structure of challenges constructed by the controller
solutions: the data structure of solutions for challenges sent by the controller
Threshold: the value of σ set by users
T: the data structure of time recorder

Input DPID.recv, Threshold
Process

1. initiallization
DPID.recv = recvFromSwitch(msg).getDPID()
OFInitialization() //OpenFlow Protocol initialization

2. if (DPID.recv == lookup(DPID.table)) then
puzzle = generate(param1,param2,…)
T.set()
send(puzzle)
…
recv(solutions[])
T.stop()
if (verify(solutions[]) && T.stop – T.set ≤ RTTτ && RTT lifecycleTτ <) then
 Drop DPID.recv and use the previous
Else

return DPID.recv //the DPID.recv is illegal
end if

end if
3. if (num(DPID.recv[])＞Threshold) then //under attack

puzzle[] = generate(param1,param2,…)
for each puzzle ∈ puzzles[]
T[i].set()
send(puzzle)
…
recv(solutions[])
T[i].stop()
if ((T.stop – T.set))＞ averageτ && verify(solutions[i])

Drop DPID.recv[i]
Else

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 855

OFExec()//execute the openflow protocol
end if
end for

end if
Output: DPID.recv //illegal value of DPID

If puzzle in the above stage ‘(2)’ is difficult enough for attacker to solve it in time more

than RTTτ , the attack threatening forwarding devices is defended. Because the time for
controller and forwarding device to exchange the heartbeat packets is RTTτ , even if an attacker
forges DPID, he/she cannot respond to controller in RTTτ due to the lack of ability to solve

puzzle within RTTτ , while the legal forwarding devices can respond in RTTτ , thus enforcing
an accurate judgment on the legitimacy of DPID.

The above stage ‘(3)’ alleviates the attack threatening the controller. When an attacker's
computing power is the same as that of a legal forwarding device, the time required by the
attacker to respond to the controller is larger than averageτ because there are a large number of

[]puzzles to solve in a short time. Under this condition, the defense can not only reduce the
attack flow on the controller, but also accurately determine the legal forwarding devices in

[]DPID.recv , and then only forwarding devices forged by the attacker are needed to be dealt
with. When the attacker has far more computing power than that of the forwarding device, we
can increase the difficulty of []puzzles to meet | ()- () | >i i averageT .stop T .set τ σ− . At this
time, time used by the attacker could not stay as stable as time used by the forwarding device
(because the attacker’s computing power is far more than that of a legal forwarding device,
which means that when the number of []puzzles changes, time used by the attacker would
change too, while the time used by a forwarding device is unchanged as it only need to solve
single puzzle), leading to the difference between the time used by the attacker and the time
used by the forwarding exceeding preset threshold σ . Under this condition, []DPID.recv i is
considered as forged by the attacker. Utilization of this method is also able to defend against
denial of service attacks caused by overflow of the controller’s flow table.

5. Design of Client-Puzzle Defense Model

5.1 SUB-PUZZLE Generation
Upon definition of 5-tuple and description of symbols in table 1, we give the process of SUB-PUZZLE
Generation.

① Controller C uses parameters like time stamp t and hash function h to work
out []ix j with length of l ，that is, 1[] (, ,)i ix j h t M j= ;

② Controller C uses hash function h again to compute []ix j to get []iy j , that is,

[] ([])i iy j h x j= ;
③ Controller C selects a sub-sequence [] 1,ix j k l< + > from []ix j , and combines it

with []iy j . Thus, a sub puzzle− is finally generated.

856 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

The concrete execution process is shown in Fig. 4.

1, ,it M j

()h

[]ix j [] 1,ix j k l< + >[] 1,ix j k< >

[]iy j

sub puzzle−

①

②

①②

③ ()h

Fig. 4. Generation process for SUB-PUZZLE

5.2 SUB-PUZZLE Solving

The purpose of generating sub puzzle− s is to request iA or iS to work out the rest bits
of []ix j , that is, [] 1,ix j k< > based on the known []iy j and [] 1,ix j k l< + > , while the
controller is easy to verify using the complete []ix j . Of course the sub-sequences of []ix j
can be either continuous or discrete. For sub puzzle− : { [], [] 1, }i iy j x j k l< + > , its
solution is [] 1,ix j k< > , as shown in ‘③’ of Fig. 4.

The steps for forwarding devices to work out [] 1,ix j k< > with received

{ [] 1, []}i ix j k l y j< + > + are as follows:

Known: length of []ix j , hash function h , []iy j and [] 1,ix j k l< + >
Target: [] 1,ix j k< >

1. Set all bits of [] 1,ix j k< > as 0;
2. Compute ([] 1,)ih x j k< > to ' []iy j ;
3. If ' [] []i iy j y j= , get the solution of this SUB-PUZZLE;
4. If ' []! []i iy j y j= , modify the last bit []ix j k< > of [] 1,ix j k< > from 0 to 1, and
turn to step 2;
5. Repeat the steps until ' [] []i iy j y j= ，then we will get the solution of SUB-PUZZLE.

According to the above steps, the worst case is that S could work out [] 1,ix j k< > after

2k hash operations (the average time is 12 / 2 2k k−=). Therefore, this problem is equivalent
to a lookup in a space of 2k , and it only differs in that each lookup is replaced with hash
operation.

5.3 PUZZLE Generation

Controller C would combine the above m sub puzzle− s so as to get iP , and then send

iP to iA or iS . The solution of iA or iS is also the combination of the above m solutions.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 857

So for iP , the computational complexity of the controller C can be divided into two
stages: the complexity of the construction phase is 2 m⋅ hash operations, and the complexity
of validation phase is m hash operations. The computational complexity for iA or iS is: it

needs 2km× hash operations in the worst case, and 12 / 2 2k km m −× = × hash operations on
average.

5.4 Security Analysis
(1) Difficulty of PUZZLE
For the attacker model for switches, when the attacker iA is requesting for connection

with C , he/she needs to receive and solve the puzzle sent by C . On average, the attacker
needs 12km − hash operations. So when the difficulty of puzzle meets the following

relationship, the attacker would fail under Client-Puzzle defense model:
12k

RTT
m

g
τ

−

> , that is,

12
RTT

k
gm τ

−> .

For the attack model for controllers, when iA or iS requests connection with C , C

would allocate a small amount of storage i
slotMem from CMem for interaction of puzzle .

Assume that C is able to allocate memory for n iA or iS , then C
i
slot

Memn
Mem

= .

① When attacker iA with the similar computing power with legal forwarding devices
generates n different DPID to attack controller C , the hash operations needed by the attacker

is 12kn m −× . When
12k

C
averagei

slot

Mem m
Mem g

τ
−⋅ ⋅
>

⋅
， that is, 12

i
average slot

C k

g Mem
m Mem

τ
−

⋅ ⋅
⋅ > ,

the DoS attack against controller C would fail;
② When attacker iA with far more computing power than legal forwarding devices is

conducting the attack, any rDPID which satisfies | ()- () | >r r averageT .stop T .set τ σ− should
be fake DPID forged by the attacker. Filtering n DPID would also make DoS attack
against controller C fail.

(2) Storage Space of PUZZLE
According to characteristics of one-way hash function, when the length of sub-sequence

chosen from []ix j is 64-bit, a dictionary-based attack can be defeated. When the length of

[]iy j is 64-bit, the hash function has only single solution, which would not conflict.
Therefore, the length of puzzle should be no more than 16 m⋅ bytes.

In addition, as controller C stores nothing about the puzzle except timestamp, C

needs to execute m times of 1[] (, , ,)i ix j h s t M j= to verify whether received solution is the
same as calculated by C after receiving the solution of puzzle . Therefore, the order of
verification is not required, and randomly choosing the solutions of sub puzzle− s to verify
can reduce the number of verification.

858 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

6. Test and Evaluation
This section tests and evaluates the feasibility and overhead of Client-Puzzle dynamic

defense method. For feasibility test, we choose open-source Fluid as platform for controllers
and forwarding devices. For performance test, we use Ryu controller and Mininet simulation
platform. The choice of lightweight controller Fluid as the feasibility test platform is due to
that Fluid is a lightweight open-source controller without complex business processing logic
of commercial controllers (e.g., Floodlight) such as QoS and load balance, and can therefore
focus the test on target. On the other hand, choosing Fluid can reduce the complexity of
prototype system. Selecting Ryu (v3.6) and Mininet (v2.2.1) as the performance test platform
is due to that Ryu is an open-source commercial controller developed in Python, and not
developed based on third-party framework (e.g., OpenDaylight is developed based on OSGi
framework), which can reduce the impact of third-party framework, and improve
practicability of the test. On the other hand, Mininet can simulate SDN networks with different
topologies, and can realize seamless migration from simulation environment to real network,
which facilitates the practical application of Client-Puzzle dynamic defense method. The
parameters for test environment is listed in Table 2.

Table 2. Parameters for test environment

Target Configuration
Fluid vm Intel Core i7-2600 @3.40GHz, 1GB

memory, 32-bit Ubuntu12.04 Open vSwitch 2.3.1 vm
Ryu 3.6 vm Intel Core i7-2600 @3.40GHz, 1GB

memory, 32-bit Ubuntu14.04 Mininet 2.2.1 vm

VMware11.1.0
Intel Core i7-2600 @3.40GHz, 8GB
memory, 64-bit Windows7 SP1 Ultimate
64-bit

6.1 Test for Feasibility
We use C++ to implement the MD5 (140 lines) algorithm as the hash operation function.

We then add the Client-Puzzle dynamic defense method into source file tls.cc under directory
\libfluid_base\fluid of controller Fluid, and recompile the controller. After that, we modify the
response module of Open vSwitch to add a Client-Puzzle calculation module. In such
execution environment, the time of hash operations tested is about 105 times per second.

(1) Feasibility test for Model 1

According to the constraint 12
RTT

k
gm τ

−> , we set 8m = . Fluid is used as controller C ,

host installed with Open vSwitch is used as forwarding device S . The attacker A is also
simulated using host with Open vSwitch installed. Network topology is shown in Fig. 5(A).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 859

Fig. 5. Network topology for feasibility test

Before the attack, has normal communication with . The attacker uses Python script

(sdn-evilswitc.py) to generate HELLO request packet with the same DPID as targeted host.
The results in Fig. 6 show the impact of CP model on attack model 1. It can be clearly
observed that C’s communication with would break up without deployment of CP
(Client-Puzzle) dynamic defense (in Non-CP model), and when enforcing the protection (CP
model), normal communication between and would stay unaffected with information
interaction after the attack.

Fig. 6. Prompting messages during feasibility test for attack model 1

(2) Feasibility test for Model 2
For attack model for the controller, there are two cases regarding relationship between the

computing power of the attacker and the forwarding device, so there are also two cases about
the difficulty :

860 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

1 ()
2

| ()- () | > ()

i
average slot

C A Sk

r r average A S

g Mem
m Mem Capacity Capacity

T .stop T .set Capacity Capacity

τ

τ σ

−

 ⋅ ⋅
⋅ > ≈

 −

Based on the above constraints, we set: 55 10g = × , 16k = , 8m = , averageτ =3s,
i
slotMem =256Byte, σ =10ms, CMem =14KBbyte.

We still use Fluid and Open vSwitch to set up the testing network, whose topology is
shown in Fig. 5(B). To simulate the different cases regarding the difference of the computing
power between the attacker and the forwarding device, we simulate the attacker by installing
Open vSwitch on hosts with Intel Core i7 equipped with single core, 3.4 GHz frequency and
1GB of memory and hosts with Intel Core i7 equipped with dual cores, 3.4 GHz frequency and
8 GB of memory, respectively. Before the attack, C communicates normally with S . The
attacker uses Python script (sdn-controllerflood.py) to generate large amounts of OpenFlow
HELLO request packets with the random DPIDs. The prompting messages shown during the
test is consistent with in Fig. 7. Fig. 8 shows the difference of CPU load before and after use of
method proposed in this paper, and the attack begins at 20th second.

The results depicted in Fig. 7 show that when CP model is enabled, not only the normal
communication between C and S is not affected, but also the controller's CPU and memory
load would decrease after a period of increase. As it can be observed that in Non-CP model,
the controller's CPU load increases gradually after a period of continuous attack, and finally
gets close to 100%, at which time the legitimate requests would not get timely responses, so
the normal communication between controller C and S would break up. With the
knowledge of this paper, it is easy to discover that the increase of CPU and memory load is due
to generating large amounts of puzzle s in a short period of time, and the ability to distinguish
legal DPIDs from fake DPIDs makes the subsequent communication unaffected by forged
DPIDs, so the load would gradually go down. It should be pointed out that the number of
DPIDs is not enough for occupying all of controller Fluid’s memory space in this paper, so
CPU utilization could not reach close to full load, and we can only observe the changing curve
of memory usage.

0 50 100 150 200 250

0

20

40

60

80

C
PU

(%
)

Time (s)

 CPU(CP)
 CPU(Non-CP)
 Memory(CP)
 Memory(Non-CP)

0

20

40

60

80

M
em

or
y(

%
)

Fig. 7. Changing curve of controller’s CPU and memory load

6.2 Test for Performance
We use Python to re-implement the MD5 algorithm and Client-Puzzle dynamic defense

module in feasibility test, and we choose SDN controller Ryu implemented in Python as the
controller for performance test. We modify the function OpenFlowController::server_loop()

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 861

in file Controller.py under directory Ryu/controller, and add dynamic defense module in it.
The topology for performance test is shown in Fig. 8.

Fig. 8. Topology for performance test

Performance test contains three aspects about the performance change before and after

adding CP module in the controller, the forwarding device, and the attacker. It proceeds as
follows: ① Using Mininet to simulate SDN network with 100 forwarding devices and 500
hosts, along with Ryu as its controller. Using commad pingall in Mininet to connect the whole
network; ② Using Open vSwitch equipped with CP module as the object of performance test
for forwarding device , which is remotely connecting to controller ; ③ Using a copy of

 as the object of performance test for attacker , and executing attack script to begin test at
20-th second after the connection of network. The results are shown in Fig. 9.

The results in Fig. 9(A) indicate that CPU usage differs in Non-CP model and CP model,
with the former having a short rise after the attacker initiating the script, while the latter having
stabilized high CPU usage due to its busy dealing with too many fake DPIDs produced by the
attacker. Although the memory usage is relatively low, it changes in the similar way with CPU
usage. Fig. 9(A) has similar changing curve with that in Fig. 8 with some different details,
mainly because Fig. 8 shows the changing curve for lightweight controller Fluid, while Fig.
9(A) shows the changing curve for commercial controller Ryu.

The results in Fig. 9(B) clearly convey that our CP model has little effect on the
performance of switches . As Ryu which is the controller used in performance test inherently
brings memory release mechanism, its memory usage in Non-CP model would gradually go
down. After the attacker launches the attack at 20-th second, the CPU usage and memory load
of forwarding device in CP model would go up first, followed by a gradual decrease. When CP
model is not enabled, as the attacker has generated large amounts of fake DPIDs in a short
period of time, legal forwarding device is forced to lose connection due to processing delay of
the controller, so instead, CPU and memory utilization will decrease.

The results in Fig. 9(C) indicate that CP-based dynamic defense could significantly
increase the attacker's load, raising the cost of the attack. In Non-CP model, the attacker needs
simply to generate fake DPIDs, so the CPU and memory usage would not fluctuate. While in
CP model, the CPU and memory usage would keep high due to a large number of s the
attacker has to solve. Fig. 9(A) to 9(C) indicates that when the performance of controller and
legal forwarding device increases by about 2%-5%, the overhead of the attacker's CPU
increases by about 90%.

862 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

From the results depicted in Fig. 9(D), it can be clearly observed that the load of the
controller is approaching 100% under 12000 forged DPIDs, but the memory usage is growing
stable gradually due to memory release. The general number of forwarding devices in current
data center network is not more than 5000 (with each forwarding device corresponding to one
DPID value), so the method proposed in this paper could defend effectively against DoS attack
on the controller in current network scale. However, as the size of the network increases, the
performance may become a bottleneck. Therefore, in the future, we can study how to apply the
CP model in parallel environment to reduce the performance influence of our method on the
controller and the switch, such as making the controller generate puzzles and verify solutions
in parallel.

（A）Controller （B）Switch

（C）Attacker

0 50 100 150 200 250

0

20

40

60

80

100

C
PU

(%
)

Time(s)

 CPU （CP）
 CPU （Non-CP）
 Memory （CP）
 Memory （Non-CP）

0

20

40

60

80

100

M
em

or
y(

%
)

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

C
PU

(%
)

Time(s)

 CPU （CP）
 CPU （Non-CP）
 Memory （CP）
 Memory （Non-CP）

0

10

20

30

40

50

60

70

80

M
em

or
y(

%
)

0 50 100 150 200 250
0

20

40

60

80

100

C
PU

(%
)

Time(s)

 CPU （CP）
 CPU （Non-CP）
 Memory （CP）
 Memory （Non-CP）

0

20

40

60

80

100

M
em

or
y(

%
)

0 2000 4000 6000 8000 10000 12000
0

50

100

C
PU

 (%
)

DPID (number in persecond)

 CPU
 MEM

（D）Capacity of DoS Defense
Fig. 9. Results of performance test

6. Conclusion
In this paper, we studied the DPID forgery attack over the southbound interface of

Openflow-based SDN controller, and proposed a CP-based dynamic defense method with
regard to attack on forwarding devices and DoS attack on controllers using DPID identity
forgery. This method can on one hand reduce the network attack flow and filter out the legal
flow, on the other hand increase the overhead of attacker to raise the difficulty for the attack.
The dynamic defense in this paper uses the experience of MTD (move target defense). Future
work is the research into how to combine MTD with dynamic programmability of SDN, and
apply that to defense for north bridge of SDN.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 2, February 2017 863

References
[1] D. Kreutz, V. Ramos, and P. Esteves, “Software-defined networking: a comprehensive survey,”

Journal of Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015. Article (CrossRef Link)
[2] I. Alsmadi and D. Xu, “Security of software defined networks: a survey,” Journal of Computer

and Security, vol. 53, no. 3, pp. 79-108, 2015. Article (CrossRef Link)
[3] S. Scott, S. Natarajan, and S. Sezer, “A survey of security in software defined networks,” Journal

of Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1-21, 2015. Article (CrossRef Link)
[4] M. M. Wang, J. W. Liu, J. Chen J and et al., “Software Defined Networking: security model,

threats and mechanism,” Journal of Software, vol. 27, no. 4, pp. 1-22, 2016.
Article (CrossRef Link)

[5] F. Hu, Q. Hao and K. Bao, “A survey on software-defined network and OpenFlow: from concept
to implementation,” Journal of Communications Surveys & Tutorials, vol. 16, no. 4, pp.
2181-2206, 2014. Article (CrossRef Link)

[6] S. Shin, and G. Gu, “Attacking software-defined networks: a first feasibility study,” in Proc. of the
ACM SIGCOMM workshop on Hot topics in software defined networking, pp. 165-176, 2013.
Article (CrossRef Link)

[7] M. Dover, “A switch table vulnerability in the Open Floodlight SDN controller,”
http://dovernetworks.com/wp-content/uploads/2014/03/OpenFloodlight-03052014.pdf, (Access
on 2016-03-30).

[8] M. Dover, “A denial of service attack against the Open Floodlight SDN controller,”
http://dovernetworks.com/wp-content/uploads/2013/12/OpenFloodlight-12302013.pdf, (Access
on 2016-03-30).

[9] P. Gregory. “Staying persistent in Software Defined Networks,”
https://www.blackhat.com/docs/us-15/materials/us-15-Pickett-Staying-Persistent-In-Software-De
fined-Networks-wp.pdf, (Access on 2016-03-30).

[10] P. Gregory. “Abusing Software Defined Networks,”
https://www.blackhat.com/docs/eu-14/materials/eu-14-Pickett-Abusing-Software-Defined-Netw
orks-wp.pdf, (Access on 2016-03-30).

[11] I. Sarmal, S. Singh and A. Singh, “Introducing restricted access protocol to enhance the security
and eliminate DDoS attack,” Jounal of Computer Security, vol. 43, no. 4, pp. 540-553, 2016.

[12] R. Durner and W. Kellerer, “The cost of security in the SDN control plane,”
http://www.lkn.ei.tum.de/forschung/publikationen/dateien/Durner2015ThecostofSecurity.pdf,
(Access on 2016-03-30).

[13] B. Cache, “A timing attack on OpenSSL constant time RSA,”
https://ssrg.nicta.com.au/projects/TS/cachebleed/cachebleed.pdf, (Access on 2016-03-30).

[14] A. Ramachandran, Y. Mundada and M. Tarig, “Securing enterprise networks using traffic
tainting,” Report of Georgia Inst. Technol., GTCS-09-15, 2009.

[15] G. Yao, J. Bi and P. Xiao, “Source address validation solution with OpenFlow/NOX architecture,”
in Proc. of International Conference on Network Protocols, pp. 7-12, 2011.
Article (CrossRef Link)

[16] A. Akhunzada, “Secure and dependable software defined networks,”
http://dx.doi.org/10.1016/j.jnca.2015.11.012, (Access on 2016-03-30).

[17] M. Liyanage, M. Ylianttila and A. Gurtov, “Securing the control channel of software-defined
mobile networks,” in Proc. of International Conference on Wireless, pp. 1-6, 2014.
Article (CrossRef Link)

[18] V. Dangovas and F. Kuliesius, “SDN-Driven authentication and access control system,” in Proc.
of International Conference on Digital Information, Networking, and Wireless Communications,
pp. 20-23, 2014.

[19] U. Toseef, A. Zaalouk, T. Rothe and et al., “CBAS: Certificate-based AAA for SDN experimental
facilities,” in Proc. of International Conference on European Workshop of Software Defined
Networks, pp. 91-96, 2014. Article (CrossRef Link)

https://doi.org/10.1109/jproc.2014.2374752
http://dx.doi.org/10.1016/j.cose.2015.05.006
https://doi.org/10.1109/comst.2015.2453114
https://doi.org/10.13328/j.cnki.jos.005020
https://doi.org/10.1109/comst.2014.2326417
https://doi.org/10.1145/2491185.2491220
https://doi.org/10.1109/icnp.2011.6089085
https://doi.org/10.1109/wowmom.2014.6918981
https://doi.org/10.1109/ewsdn.2014.41

864 Wu et al.: A Dynamic Defense for Identity-Forgery Attack on the South-Bound of SDN

[20] A. Juels and J. Brainard, “Client puzzles: a cryptographic defense against connection depletion
attacks,” in Proc. of International Conference on Network and Distributed System Security
Symposium, pp. 27-39, 1999.

[21] F. Wang and K. Reiter, “A multi-layer framework for puzzle-based denial-of-service defense,”
Journal of Information Security, vol. 7, no. 4, pp. 243-263, 2008. Article (CrossRef Link)

[22] J. Clark and A. Essex, Commitcoin: Carbon dating commitments with bitcoin, Springer,
Heidelberg, 2012.

[23] J. Becker, D. Breuker and T. Heide, Can we afford integrity by proof-of-work? Scenarios inspired
by the Bitcoin currency, Springer, Heidelberg, 2013.

[24] R. Bohme, N. Christin and B. Edelman, “Bitcoin: economics, technology, and governance,”
Journal of Economic Perspectives, vol. 29, no. 2, pp. 213-238, 2015. Article (CrossRef Link)

[25] O. Kaiwartya, S. Kumar, K. Lobiyal and et al., “Performance improvement in geographic routing
for vehicular Ad Hoc networks,” Sensors, vol. 14, no. 12, pp. 22342-22371, 2014.
Article (CrossRef Link)

[26] O. Kaiwartya and S. Kumar, “Cache agent-based geocasting in VANETs,” International Journal
of Information and Communication Technology, vol. 7, no. 6, pp. 562-584, 2015.
Article (CrossRef Link)

Qiang Wei born in 1979, Master’s supervisor. His main research interests include ICS
security, software vulnerability analysis and SDN network security.

Zehui Wu born in 1988, doctoral candidate. His research interest includes SDN network
security.

Kailei Ren born in 1992, Master Degree Candidate. His research interest includes SDN
network security.

Qingxian Wang born in 1960, PhD supervisor. His main research interest includes
network security.

https://doi.org/10.1007/s10207-007-0042-x
https://doi.org/10.1257/jep.29.2.213
https://doi.org/10.3390/s141222342
https://doi.org/10.1504/ijict.2015.072038

