• Title/Summary/Keyword: Soft switching full bridge converter

Search Result 80, Processing Time 0.024 seconds

A Hybrid DC/DC Converter for EV OBCs Using Full-bridge and Resonant Converters with a Single Transformer

  • Hassan, Najam ul;Kim, Yoon-Jae;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • This paper proposes a dc/dc converter for electric vehicle onboard chargers using a secondary resonant tank. To attain soft switching characteristics, such as zero voltage switching, magnetizing inductance has been used at the primary side of the transformer. The leakage inductance of the transformer is used as a resonant inductor on the secondary side to avoid the use of a separate inductor as resonance. The proposed converter is applicable for a wide load range. A 6.6KW prototype has been implemented for a wide range of load variations (250V, 330V, 360V, and 413V). A maximum efficiency of 97.4% is achieved at 413V.

A study on the ZVT method of high frequency DC-DC converter (ZVT방식 고주파 DC-DC 콘버어터 개발에 관한 연구)

  • Kye, Moo-Ho;Joe, Kee-Yeon;Hong, Sung-Chul;Kim, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.345-347
    • /
    • 1994
  • It is importent to have the switching frequency of power supplies increase in order to reduce their size and weight. But according to increasing the switching frequency, there are several defacts - that is switching losses, high voltage/current stresses and conduction losses and so on. That's why soft switching method was proposed. This paper presents the simulation and analysis of the new proposed Full bridge Zero-Voltage-Transition PWM DC-DC converter for developing that unit. This circuit doesen't increase the voltage and current stresses of main MOSFET switches. Voltage type quasi-resorent method is applied and expected high effenciency. Switching frequency is 100KHz and main switches are MOSFET.

  • PDF

Digital Control of Low-Frequency Square-Wave Two-Stage Electronic Ballast for HID Lamps with Resonant Ignition and High Efficiency (공진 점등 기능과 효율 향상을 위한 HID 램프의 저주파수 구형파 2단 전자식 안정기)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2013
  • In this paper, electronic ballast using resonant inverter for HID lamp is designed and implemented. The proposed electronic ballast is used the soft switching technology ZVS(Zero Voltage Switching) to reduce turn-on and turn-off loss. The ignition of proposed electronic ballast is achieved by controlling a full bridge inverter which is consisted of LC filter for resonance. After ignition the ballast operates as a low frequency square wave inverter by controlling a full bridge inverter as a buck converter. After ignition at resonant frequency of $f_o$=160kHz, the switching frequency of a buck converter is consisted of 50kHz of high frequency and 170Hz of low frequency. This is for attenuating high frequency harmonics and avoiding acoustic resonance. The experimental results show that electronic ballast using resonant inverter is operated stably.

A New High-Efficient Interleaved Converter for Low-Voltage and High-Current Power Systems (저전압 고전류 사양에 적합한 고효율 인터리브 컨버터)

  • Cho, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.600-608
    • /
    • 2016
  • This paper proposes a new high-efficient interleaved phase-shift full-bridge (PSFB) converter for low-voltage and high-current power systems. The proposed converter is composed of three switch-bridges and two transformers in the primary side and two rectifiers in the secondary side. Each transformer handles half of the total power with an interleaved operation, so that the proposed converter has high system reliability, as much as the conventional interleaved PSFB converter. The soft-switching characteristics of the proposed converter are better than those of the conventional converter due to the modulated primary side configuration. The proposed converter represents a single lagging-leg bridge, which has a poor soft switching condition in its operation, while the conventional converter has two lagging-leg bridges in its operation. Therefore, the number of switches having hard-switching conditions is reduced by half in the proposed converter. In addition, the reduced switch counts in the primary side of the proposed converter helps decrease the complexity of the proposed converter compared to that of the conventional converter. The operational principle and analysis are presented in this paper and the characteristics are verified using a PSIM simulation with 3kW server power specification.

Commercial Vehicle Anti-Start Air Conditioner Compressor System Using a Power Conversion Unit (전력변환장치를 이용한 상용차용 무시동 에어컨 압축기 시스템)

  • Han, Keun-Woo;Kim, Seong-Gon;Lee, Chung-Hoon;Choi, Myoung-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.96-108
    • /
    • 2015
  • his study deals with a power conversion unit of an anti-start air conditioner compressor system for the commercial vehicle. In case of converter, to reduce the switching losses and current stresses of the device, applies LLC resonant topology. Transformer leakage inductance in the full-bridge converter is used for making the resonance with the capacitor of the voltage-doubler. Through this method we can increase power and decrease volume of system. Both circuit analysis and design guideline are described. So in this paper, power conversion unit is designed. 2.5kW anti-start air conditioner compressor system was implemented, and system operation and stability was verified through experiment.

A Study on Two Stage PFC Full-Bridge Converter with a Single PWM Controller (단일 PWM 제어기에 의한 역률보상 이단 풀 브리지 컨버터에 관한 연구)

  • Jeon, Joon-Sang;Kim, Yong;Kwon, Soon-Do;Kim, Pil-Soo;Yoon, Suk-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.368-371
    • /
    • 2000
  • Two-stage power factor correction (PFC) converter with a single PWM controller is proposed. It consists of a power factor pre-regulator cascaded by an isolated DC/DC converter as in a conventional two-stage approach. However, a single PWM controller is used as in a single-stage, single-switch PFC approach. This converter gives the goof power factor correction, low line current harmonic distortions, and tight output voltage regulations. This converter also has a high efficiency by employing an soft switching method. The proposed approach has advantages such as high performance over the single-stage approach and low cost over two-stage approach. The experimental results obtained on a 300W (30V/10A) prototype PFC converter are given to verify the effectiveness of the proposed control method.

  • PDF

Uninterruptible power supply using the secondary auxiliary soft switching high frequency insulating (2차측 보조 소프트 스위칭 고주파 절연형 무정전전원장치)

  • Kim, J.Y.;Suh, K.Y.;Lee, H.W.;Mun, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1413-1415
    • /
    • 2005
  • In paper, propose new partial resonance ZCS PWM controlled High frequency insulating Full-bridge DC/DC converter not using exciting current of high frequency transformer. It is compared with the existing principles in characteristics. It also realizes a widely stabilized ZVS operating using new On-Off control method at synchronized power rectification MOSFET of high frequency insulating transformer secondary. Finally, it is brought over 97[%] measurement -efficiency by proposed DC-DC converter. It is proved effectiveness of new methods using DC UPS PWM rectifier as switching power.

  • PDF

A Study on Reactor Capacitance Estimation Algorithm and 5kW Plasma Power Supply Design for Linear Output Control of Wide Range (넓은 범위의 선형 출력 제어를 위한 5kW 플라즈마 전원장치 설계 및 반응기 커패시턴스 추정 알고리즘의 관한 연구)

  • Noh, Hyun-Kyu;Lee, Jun-Young;Kim, Min-Jea
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.514-524
    • /
    • 2016
  • This work suggests a study on 5 kW plasma power supply design and reactor capacitance estimation algorithm for a wide range of linear output control to operate a plasma reactor. The suggested study is designed to use a two-stage circuit and control the full-bridge circuit of the two-stage circuit using the buck converter output voltage of the single-stage circuit. The switching frequency of the full-bridge circuit is designed to operate through high-frequency switching and obtain maximum output using LC parallel resonance. Soft switching technique(ZVS) is used to reduce the loss caused by high-frequency switching, and duty control of the buck converter is applied to control a wide range of linear output. The internal capacitance of the reactor cannot easily be extracted, and thus, the reactor cannot be operated in an optimized resonant state. To address this issue, this work designs the internal capacitance of the reactor such that estimations can be performed with the developed reactor capacitance estimation algorithm applied to the internal capacitance of the reactor. A 5 kW plasma power supply is designed for a wide range of linear output control, and the validity of the study on the reactor capacitance estimation algorithm is verified.

A Study on High Frequency Resonant Type X-ray Generator (고주파 공진형 방식 X-선 발생장치에 관한 연구)

  • Yoo, Dong-Wook;Ha, Sung-Woon;Baek, Joo-Won;Kim, Jong-Soo;Kim, Hack-Seong;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.209-211
    • /
    • 1995
  • This paper is concerned with High Frequency, High Voltage Generator for X-ray using zero-voltage soft-switching PWM DC-DC high-power converter by Resonant method, which makes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series Resonant full-bridge PWM DC-DC high-power converter operating at a constant frequency;25kHz. The converter output regulation is digitally controlled using DSP (Digital Signal Processor) for obtaining a fast rising time and adjust output voltage within a wide load range.

  • PDF

Design and Analysis of a 7kW LDC using Coupled Inductor for Heavy Hydrogen Electric Transport Vehicle (Coupled Inductor를 사용한 대형수소전기화물차용 7kW급 저전압 컨버터의 설계 및 분석)

  • Heo, Gyeong-Hyeon;Lee, Woo-Seok;Choi, Seung-Won;Lee, Il-Oun;Song, Hyung-Suk;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • This study proposes a 7kW low-voltage DC-DC converter (LDC) using a coupled inductor (CI) for heavy hydrogen electric transport vehicles. The LDC uses a phase-shift manner for soft switching. SiC-MOSFET is used to reduce the loss of reverse recovery current through the use of a high switching frequency. LDC is require large transformer and inductor because of large output current. The size of transformer and inductor can be reduced by deviding the transformer and inductor into two pieces each. This work presents the experimental results of the proposed circuit.