• Title/Summary/Keyword: Soft Surface

Search Result 975, Processing Time 0.027 seconds

Model for predicting ground surface settlement by field measuring and numerical analysis in shield TBM tunnel (현장계측과 수치해석에 의한 쉴드TBM 터널의 지표침하 예측모델)

  • Kim, Seung-Chul;Ahn, Sung-Youll;Lee, Song;Noh, Tae-Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.271-287
    • /
    • 2013
  • In this study, more convenient model(S-model) for predicting ground surface settlement is developed through comparing field monitoring data of the domestic subway applied shield TBM method with conventional equation & numerical analysis. Sample stations are chosen from whole of excavation section and lateral & vertical ground surface settlement characteristic with excavation are analysed. Based on analysis result, through the comparison with actual monitoring data, the model that is possible to compute maximum surface settlement and settlement influence area is suggested with assumption that lateral surface settlement forms are composed relaxed zone and elastic zone. In addition, vertical ground surface settlement patterns with excavation are similar to cubic-function and S-model with assumption that coefficients are function of tunnel diameter and depth is suggested. Consequently, the ground surface settlement patterns are significantly similar to actual monitoring data and numerical method result. Thus, as a result, when tunnels are excavated using sheild TBM through rather soft weathered soil & rock layer, prediction of ground surface settlement with excavation using convenient S-model is practicable.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

A Literature Review on Nano-Modified Implant Surfaces (나노구조 표면에 관한 문헌고찰)

  • Park, Go-Woon;Cha, Min-Sang;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • The nano-surface modification techniques could be classified; internal modifications which enhance surface roughness and porosity in nano level and external modifications as nano particle coating. Nano-modified implant surface has various morphograpies such as nanotube, nanopit, nanonodule and polymorphic structures. Creating surface depends upon preparation method and material, however, there is no standard preparation technique not yet. The nano-modified surfacet is electrochemically stable comparing with the surface modified in micron level. Nano-modified surface has little cytotoxicity, stimulates osteoblast proliferation and differentiation. Moreover, it decreases soft tissue intervention by interrupting the proliferation of fibroblast. Nanostructure has similar size and shape with cells and proteins, consequently leads to good biocompatibility and enhanced osseointegration. However, the actual effect in vivo is limited, due to the distance of effect. Even if nano-modified surface has antibiotic property due to photocatalysis, short duration time makes clinical application questionable. Further investigations should focus on the optimal nano-modified surface, which has many potentials.

THE EFFECT OF SURFACE TREATMENT OF THE CERVICAL AREA OF IMPLANT ON BONE REGENERATION IN MINI-PIG (미니돼지에서 발치 후 즉시 임플란트 매식시 치경부 표면처리가 골재생에 미치는 효과)

  • Cho, Jin-Yong;Kim, Young-Jun;Yu, Min-Gi;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.285-292
    • /
    • 2008
  • Purpose: The present study was performed to evaluate the effect of surface treatment of the cervical area of implant on bone regeneration in fresh extraction socket following implant installation. Materials and methods: The four minipigs, 18 months old and 30 kg weighted, were used. Four premolars of the left side of both the mandible and maxilla were extracted. ${\phi}$3.3 mm and 11.5 mm long US II plus implants (Osstem Implant co., Korea) with resorbable blasting media (RBM) treated surface and US II implants (Osstem Implant co., Korea) with machined surface at the top and RBM surface at lower portion were installed in the socket. Stability of the implant was measured with $Osstell^{TM}$ (Model 6 Resonance Frequency Analyser: Integration Diagnostics Ltd., Sweden). After 2 months of healing, the procedures and measurement of implant stability were repeated in the right side by same method of left side. At four months after first experiment, the animals were sacrificed after measurement of stability of all implants, and biopsies were obtained. Results: Well healed soft tissue and no mobility of the implants were observed in both groups. Histologically satisfactory osseointegration of implants was observed with RBM surface, and no foreign body reaction as well as inflammatory infiltration around implant were found. Furthermore, substantial bone formation and high degree of osseointegration were exhibited at the marginal defects around the cervical area of US II plus implants. However, healing of US II implants was characterized by the incomplete bone substitution and the presence of the connective tissue zone between the implant and newly formed bone. The distance between the implant platform (P) and the most coronal level of bone-to-implant contact (B) after 2 months of healing was $2.66{\pm}0.11$ mm at US II implants group and $1.80{\pm}0.13$mm at US II plus implant group. The P-B distance after 4 months of healing was $2.29{\pm}0.13$mm at US II implants group and $1.25{\pm}0.10$mm at US II plus implants group. The difference between both groups regarding the length of P-B distance was statistically significant(p<0.05). Concerning the resonance frequency analysis (RFA) value, the stability of US II plus implants group showed relatively higher RFA value than US II implants group. Conclusion: The current results suggest that implants with rough surface at the cervical area have an advantage in process of bone regeneration on defect around implant placed in a fresh extraction socket.

A Study on Wear Characteristics of Piston Running Part (피스톤 런닝부의 소재에 따른 마모특성 연구)

  • Jang, J.H.;Yi, H.K.;Joo, B.D.;Lee, J.H.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

  • PDF

A Study on Image Scale of the Hand and Sensibility of Silk Woven Fabrics (견직물의 태와 감성 차원의 이미지 스케일에 관한 연구;넥타이용 직물을 중심으로)

  • 김춘정;나영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.6
    • /
    • pp.898-908
    • /
    • 1999
  • This paper was aimed to identify the hand and sensibility of silk woven fabrics for neckties to find their relationships to the hand and purchasing preferences and to make their image scale. 56 male and female students evaluated 20 specimens with semantic differential scale of 21 hand and 25 sensibility adjectives. Data were analyzed through factor analysis pearson correlational coefficient t-test using PC SAS package. the hand adjectives were grouped as 4 surface property thermal property flexibility and dryness. The sensibility adjectives were modern classic character and natural,. The flat fabrics with warm hand displayed 'modern' sensibility but those with col hand show 'classic' The rough fabrics with warm hand showed 'natural' but those with cool hand showed 'character' The fabrics rated as high hand preference and purchasing preference showed soft and flat hand occuring 'modern' and 'classic' sensibility.

  • PDF

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion (비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Construction of roadbed with environmental friendly soil amendment agent (친환경 토질개량제를 이용한 도로노반 건설공사에 관한 연구)

  • 고용국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.417-421
    • /
    • 2003
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent. The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride,, thus is friendly to the environment, and has a function of soil-cement-agent solidification. Various components of this agent weaken the negative function of humic acid and decompose humic acid itself. Then, the calcium cation of the cement can now be made contact directly to the soil surface. The project of local road demonstration of roadbed construction with special soil treatment agent was peformed in Northeast Thailand on August 1999 by the sponsor of Highway Department of Thailand. A series of field experiments including unconfined compressive strength were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this solidifying agent. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent.

  • PDF

Tribological Characteristics of Diamond-like Carbon Films Based on Hardness of Mating Materials

  • Na, Byung-Chul;Tanaka, Akihiro
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.147-148
    • /
    • 2002
  • This study made use of four kinds of mating balls that were made with stainless steel but subjected to different annealing conditions in order to achieve different levels of hardness. In all load conditions, testing results demonstrated that the harder the mating materials, the lower the friction coefficient was. Conversely, the high friction coefficient found in soft martensite balls appeared to be caused by the larger contact area between the DLC film and the ball. Raman Spectra analysis showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

  • PDF

Control of an Active Vehicle Suspension Using Electromagnetic Motor

  • Kim, Woo-Sub;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.282-285
    • /
    • 2003
  • Two criteria of good vehicle suspension performance are typically their ability to provide good road handling and increased passenger comfort. So far, The existing active vehicle suspension uses pneumatic and hydraulic actuators that enhance road handling and passenger comfort. But these kinds of actuators have nonlinear characteristic less than an electromagnetic motor. In this research, we are trying to examine the feasibility and the experiment of an active vehicle suspension using electromagnetic motor in order to enhance the ride quality because existing active vehicle suspension using active power sources such as compressors, hydraulic pumps has nonlinear characteristic. Active vehicle suspension using electromagnetic motor will have the ability to behave differently on smooth and rough roads. The desired response should be soft in order to enhance ride comfort, but when the road surface is too rough the suspension should stiffen up to avoid hitting its limits.

  • PDF