• 제목/요약/키워드: Sodium-ion battery

검색결과 34건 처리시간 0.019초

나트륨을 활용한 이차전지 연구동향 (Research Review of Sodium and Sodium Ion Battery)

  • 유철휘;강성구;김진배;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.54-63
    • /
    • 2015
  • The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.

상온용 나트륨/유황전지의 방전 특성 (Discharge Properties of Sodium-sulfur Batteries at Room Temperature)

  • 김태범;안효준;허보영
    • 한국재료학회지
    • /
    • 제16권3호
    • /
    • pp.193-197
    • /
    • 2006
  • The sodium/sulfur(Na/S) battery has many advantages such as high theoretical specific energy(760Wh/kg), and low material cost based on the abundance of electrode material in the earth. It has been reported that the electrochemical properties of sodium/sulfur cell above $300^{\circ}C$, utilized a solid ceramic electrolyte and liquid sodium and sulfur electrodes. A lot of researches have been performed in this field. Recently, Na/S battery system was applied for electricity storage system for load-leveling. One of severe problems of sodium/sulfur battery was high operating temperature above $300^{\circ}C$, which could induce the explosion and corrosion by molten sodium, sulfur and polysulfides. In order to develop sodium battery operated at low temperature, sodium ion battery has been studied using carbon anode, and sodium oxides cathodes. However, the energy densities of the sodium ion batteries were much lower than high temperature sodium/sulfur cell. In this study, the sodium/sulfur battery with 1M $NaCF_3SO_3$ is tested at room temperature. The charge-discharge mechanism was discussed based on XRD, DSC, SEM and EDS results.

Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries

  • Kim, Hyunwoo;Kim, Dong In;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.32-53
    • /
    • 2022
  • Although lithium-ion batteries are currently the most reliable power supply system for various mobile applications, further improvement in energy density is still required as the need for batteries in large energy-consuming devices is rapidly growing. However, in the anode, the most widely commercialized graphite-based anode materials almost face theoretical limitations. In addition, sodium-ion batteries have been actively studied to replace expensive charge carriers with cheaper ones. Accordingly, conversion-based materials have been extensively studied as high-capacity anode materials in both lithiumion batteries and sodium-ion batteries because their theoretical capacity is twice or thrice higher than that of insertion-based materials. This review will provide a comprehensive understanding of conversion-based materials, including basic charge storage behaviors, critical drawbacks that should be overcome, and practical material design for high-performance.

Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구 (Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries)

  • 임영록;임수아;박정희;조원일;임상후;차은희
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.161-171
    • /
    • 2015
  • 수열합성법을 이용하여 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선을 대량 합성하였고 리튬이온 전지와 소듐이온전지의 전기화학적 특성을 조사하였다. 리튬이온전지에서 $Zn_2GeO_4$ 나노선은 50 사이클 이후에 1021 mAh/g, $Zn_2SnO_4$ 나노선은 692 mAh/g의 높은 방전용량을 갖는 것을 확인하였고 두 나노선 모두 98%가 넘는 쿨롱 효율을 보였다. 따라서 이들 나노선은 고성능 리튬이온전지의 개발을 위한 음극소재로 기대된다. 또한 소듐이온전지에 대한 관심이 국내는 물론 전 세계적으로 집중이 되고 있어 처음으로 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선에 대한 소듐이온전지를 제작하여 용량을 측정하였다. 측정한 결과 이들 나노선은 50 사이클 이후에 각각 168 mAh/g 과 200 mAh/g의 방전용량을 갖는 것을 확인하였고 두 나노선 모두 97%가 넘는 높은 쿨롱 효율을 보였으며 이에 우리의 첫 시도가 앞으로 많은 연구에 기여할 것으로 예상한다.

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

상온형 나트륨/유황 이차전지 개발 동향 (Development of Room Temperature Na/S Secondary Batteries)

  • 유호석;김인수;박진수
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.753-763
    • /
    • 2016
  • High temperature sodium/sulfur battery(Na/S battery) has good electrochemical properties, but, the battery has some problems such as explosion and corrosion at al. because of using the liquid electrodes at high temperature and production of high corrosion. Room temperature sodium/sulfur batteries (NAS batteries) is developed to resolve of the battery problem. To recently, room temperature sodium/sulfur batteries has higher discharge capacity than its of lithium ion battery, however, cycle life of the battery is shorter. Because, the sulfur electrode and electrolyte have some problem such as polysulfide resolution in electrolyte and reaction of anode material and polysulfide. Cycle life of the battery is improved by decrease of polysulfide resolution in electrolyte and block of reaction between anode material and polysulfide. If room temperature sodium/sulfur batteries (NAS batteries) with low cost and high capacity improves cycle life, the batteries will be commercialized batteries for electric storage, electric vehicle, and mobile electric items.

수열 합성법에 의해 제조된 주석-안티몬 황화물계 나노복합체 기반 나트륨이온전지용 음극의 전기화학적 특성 (Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries)

  • 박소현;정수환;엄수윤;이상준;김주형
    • 한국재료학회지
    • /
    • 제32권12호
    • /
    • pp.545-552
    • /
    • 2022
  • Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.

카본 코팅된 니켈-코발트 황화물의 요크쉘 입자 제조 및 소듐 이온 배터리의 음극 소재 적용 (Synthesis of Carbon Coated Nickel Cobalt Sulfide Yolk-shell Microsphere and Their Application as Anode Materials for Sodium Ion Batteries )

  • 서효영;박기대
    • 한국분말재료학회지
    • /
    • 제30권5호
    • /
    • pp.387-393
    • /
    • 2023
  • Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitch-derived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

Pyro-synthesis of Na2FeP2O7 Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability

  • Song, Jinju;Yang, Juhyun;Alfaruqi, Muhammad Hilmy;Park, Wangeun;Park, Sohyun;Kim, Sungjin;Jo, Jeonggeun;Kim, Jaekook
    • 한국세라믹학회지
    • /
    • 제53권4호
    • /
    • pp.406-410
    • /
    • 2016
  • Carbon-coated sodium iron pyrophosphate ($Na_2FeP_2O_7$) was prepared by a simple and low-cost pyro-synthesis route for further use as the cathode for Na-ion batteries. The X-ray diffraction (XRD) pattern of the sample annealed at $650^{\circ}C$ confirmed the pure triclinic phase of $Na_2FeP_2O_7$. Electron microscopy studies revealed a cross linked plate shape morphology of the $Na_2FeP_2O_7$ sample. When tested for application in Na-ion battery, the $Na_2FeP_2O_7$ cathode showed two redox pairs in the potential window of 2.0-4.0 V. The cathode registered initial discharge and charge capacities of 80.85 and 90 mAh/g, respectively, with good cycling performance.