DOI QR코드

DOI QR Code

Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries

Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구

  • Lim, Young Rok (Department of Chemistry, Korea University) ;
  • Lim, SooA (Department of Chemistry, Korea University) ;
  • Park, Jeunghee (Department of Chemistry, Korea University) ;
  • Cho, Won Il (Center for Energy convergence, Korea Institute of Science and Technology) ;
  • Lim, Sang Hoo (Dept. of pharmaceutical engineering, Hoseo University) ;
  • Cha, Eun Hee (Dept. of pharmaceutical engineering, Hoseo University)
  • 임영록 (고려대학교 소재화학과) ;
  • 임수아 (고려대학교 소재화학과) ;
  • 박정희 (고려대학교 소재화학과) ;
  • 조원일 (한국과학기술연구원 이차전지연구센터) ;
  • 임상후 (호서대학교 제약공학과) ;
  • 차은희 (호서대학교 제약공학과)
  • Received : 2015.08.28
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

High-yield zinc germanium oxide ($Zn_2GeO_4$) and zinc tin oxide ($Zn_2SnO_4$) nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires as anode materials of lithium ion battery and sodium ion battery. The $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.

수열합성법을 이용하여 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선을 대량 합성하였고 리튬이온 전지와 소듐이온전지의 전기화학적 특성을 조사하였다. 리튬이온전지에서 $Zn_2GeO_4$ 나노선은 50 사이클 이후에 1021 mAh/g, $Zn_2SnO_4$ 나노선은 692 mAh/g의 높은 방전용량을 갖는 것을 확인하였고 두 나노선 모두 98%가 넘는 쿨롱 효율을 보였다. 따라서 이들 나노선은 고성능 리튬이온전지의 개발을 위한 음극소재로 기대된다. 또한 소듐이온전지에 대한 관심이 국내는 물론 전 세계적으로 집중이 되고 있어 처음으로 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선에 대한 소듐이온전지를 제작하여 용량을 측정하였다. 측정한 결과 이들 나노선은 50 사이클 이후에 각각 168 mAh/g 과 200 mAh/g의 방전용량을 갖는 것을 확인하였고 두 나노선 모두 97%가 넘는 높은 쿨롱 효율을 보였으며 이에 우리의 첫 시도가 앞으로 많은 연구에 기여할 것으로 예상한다.

Keywords

References

  1. R. Z. Hu, H. Liu and J. W. Liu, Chin. Sci. Bull. 57, 4119 (2012). https://doi.org/10.1007/s11434-012-5303-z
  2. X. L. Wu, Y. G. Guo and L. J. Wan, Chem. Asian J. 8, 1948 (2013). https://doi.org/10.1002/asia.201300279
  3. J. D. Ocon, J. K. Lee and J. Lee, Appl. Chem. Eng. 25, 1 (2014). https://doi.org/10.14478/ace.2014.1008
  4. M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982). https://doi.org/10.1149/1.2123803
  5. J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc.151, A698 (2004). https://doi.org/10.1149/1.1697412
  6. R. A, Higgns, J. Power Sources. 81-82, 13 (1999). https://doi.org/10.1016/S0378-7753(99)00124-X
  7. M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999). https://doi.org/10.1016/S0013-4686(99)00191-7
  8. J.K. Feng, M.O. Lai and L. Lu, Electrochem Commun. 13, 287 (2011) https://doi.org/10.1016/j.elecom.2011.01.005
  9. R. Yi, J. Feng, D. Lv, M. L. Gordin, S. Chen, D. Choi and D. Wang, Nano Energy. 2, 498 (2013). https://doi.org/10.1016/j.nanoen.2012.12.001
  10. F. Zou, X. Hu, Y. Sun, W. Luo, F. Xia, L. Qie, Y. Jiang and Y. Huang, Chem. Eur. J. 19, 6027 (2013). https://doi.org/10.1002/chem.201204588
  11. W. Li, X. Wang, B. Liu, J. Xu, B. Liang, T. Luo, S. Luo, D. Chen and G. Shen, Nanoscale. 5, 10291 (2013). https://doi.org/10.1039/c3nr03530a
  12. F. Zou, X. Hu, L. Qie, Y. Jiang, X. Xiong, Y. Qiao and Y. Huang, Nanoscale. 6, 924 (2014). https://doi.org/10.1039/C3NR04917E
  13. W. Chen, L. Lu, S. Maloney, Y. Yang and W. Wang, Phys. Chem. Chem. Phys. 17, 5109 (2015). https://doi.org/10.1039/C4CP05705H
  14. A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu and D. Y. Song, J. Phys. Chem. B. 110, 14754 (2006). https://doi.org/10.1021/jp062875r
  15. X. J. Zhu, L. M. Geng, F. Q. Zhang, Y. X. Liu and L. B. Cheng, J. Power. Sources. 189, 828 (2009). https://doi.org/10.1016/j.jpowsour.2008.07.028
  16. X. Hou, Q. Cheng, Y. Bai and W. F. Zhang, Solid State Ionics. 181, 631 (2010). https://doi.org/10.1016/j.ssi.2010.03.006
  17. S. M. Becker, M. Scheuermann, V. Sepelak, A. EichhOfer, D. Chen, R. MOnig, A. S. Ulrich, d. H. Hahnab and S. Indris, Phys. Chem. Chem. Phys. 13, 19624 (2011). https://doi.org/10.1039/c1cp22298h
  18. N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu and D. He, Mater Lett. 76, 66 (2012). https://doi.org/10.1016/j.matlet.2012.02.071
  19. K. Kim, A. Annamalai, S. H. Park, T. H. Kwon, M. W. Pyeon, M. J. Lee, Electrochim Acta. 76, 192 (2012). https://doi.org/10.1016/j.electacta.2012.04.121
  20. W. Song, J. Xie, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Mater. Res. 28, 24 (2012).
  21. X. Zheng, Y. Li, Y. Xu, Z. Hong and M. Wei, CrystEng Comm. 14, 2112 (2012). https://doi.org/10.1039/c2ce06350f
  22. Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang, W. Zhang and X. Sun, RSC Adv. 3, 14480 (2013). https://doi.org/10.1039/c3ra42176g
  23. C. T. Cherian, M. Zheng, M. V. Reddy, B. V. R. Chowdari, and C. H. Sow, ACS Appl. Mater. Interfaces. 5, 6054 (2013). https://doi.org/10.1021/am400802j
  24. W. Song, J. Xie, W. Hu, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Power. Sources. 229, 6 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.090
  25. H. Huang, Y. Huang, M. Wang, X. Chen, Y. Zhao, K. Wang and H. Wu, Electrochim Acta. 147, 201 (2014). https://doi.org/10.1016/j.electacta.2014.09.117
  26. H. Fan, Z. Liu, J. Yang, C. Wei, J. Zhang, L. Wu and We. Zheng, RSC Adv. 4, 49806 (2014). https://doi.org/10.1039/C4RA08125K
  27. Y. Zhao, Y. Huang, X. Sun, H. Huang, K. Wang, M. Zong and Q. Wang, Electrochim Acta. 120, 128 (2014). https://doi.org/10.1016/j.electacta.2013.12.098
  28. K Wang, Y. Huangn, H. Huang, Y. Zhao, X. Qin, X. Sun and Y. Wang, Ceram Int. 40, 8021 (2014). https://doi.org/10.1016/j.ceramint.2013.12.154
  29. R. Zhang, Y. He and L. Xu, J. Mater. Chem. A. 2, 17979 (2014). https://doi.org/10.1039/C4TA03227F
  30. K. Wang, Y. Huangn, T. Han, Y. Zhao, H. Huang and L. Xue, Ceram Int. 40, 2359 (2014). https://doi.org/10.1016/j.ceramint.2013.08.006
  31. T. Jiang, X. Tian, H. Gu, H. Zhu and Y Zhou, J. Alloys Compd. 639, 239 (2015). https://doi.org/10.1016/j.jallcom.2015.03.172
  32. C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y Zhang and Y. Guan, Mater Lett. 138, 120 (2015). https://doi.org/10.1016/j.matlet.2014.09.110
  33. L. Qin, S. Liang, A. Pan and X. Tan, Mater Lett. 141, 255 (2015). https://doi.org/10.1016/j.matlet.2014.11.132
  34. B. -Y. Wang, H. -Y. Wang, Y. -L. Ma, X. -H. Zhao, W. Qi and Q. -C. Jiang, J. Power. Sources. 281, 341 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.014
  35. Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res. 48, 1657 (2015). https://doi.org/10.1021/acs.accounts.5b00114
  36. L. Baggetto, J. K. Keum , J. F. Browning , G. M. Veith, Electrochem Commu. 34, 41 (2013). https://doi.org/10.1016/j.elecom.2013.05.025
  37. A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. M. Lotfabad, W. P. Kalisvaart and D. Mitlin, Nano Lett. 14, 5873 (2014). https://doi.org/10.1021/nl502812x
  38. Y. Xu , Y. Zhu, Y. Liu and C. Wang, Adv. Energy Mater. 3, 128 (2013). https://doi.org/10.1002/aenm.201200346
  39. D. -H. Nam, K. -S Hong, S. -J. Lim, T. -H. Kim and H.-S. Kwon, J. Phys. Chem. C. 118, 20086 (2014). https://doi.org/10.1021/jp504055j
  40. J. Liu, Y. Wen, P. A. v. Aken, J. Maier and Y. Yu, Nano Lett. 14, 6387 (2014). https://doi.org/10.1021/nl5028606
  41. Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc. 132, 14385 (2010). https://doi.org/10.1021/ja1068596
  42. Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yuab and Z. Zou, Nanoscale. 4, 3490 (2012). https://doi.org/10.1039/c2nr30279a