• Title/Summary/Keyword: Sobel edge detection algorithm

Search Result 83, Processing Time 0.022 seconds

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

Detection of Pupil Center using Projection Function and Hough Transform (프로젝션 함수와 허프 변환을 이용한 눈동자 중심점 찾기)

  • Choi, Yeon-Seok;Mun, Won-Ho;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.167-170
    • /
    • 2010
  • In this paper, we proposed a novel algorithm to detect the center of pupil in frontal view face. This algorithm, at first, extract an eye region from the face image using integral projection function and variance projection function. In an eye region, detect the center of pupil positions using circular hough transform with sobel edge mask. The experimental results show good performance in detecting pupil center from FERET face image.

  • PDF

AWGN Removal Filter using Sobel Edge Detection (소벨 에지 검출을 이용한 AWGN 제거 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.533-535
    • /
    • 2018
  • As the use frequency of electronic communication equipment increases due to the influence of the 4th industrial revolution, the importance of image and signal processing is increasing. However, due to noise caused by various causes, the reliability of the equipment is degraded and malfunctions are caused. In this paper, we propose an algorithm to remove AWGN in most environments. The existing methods show relatively poor performance due to the smoothing phenomenon at the boundary of the image. To overcome this problem, we proposed a filter algorithm that adapts to the boundary region using the Sobel edge detection to remove the noise. And using the PSNR compared with traditional methods, such as to demonstrate the performance of the proposed algorithm.

  • PDF

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

Algorithm for Detecting PSD Boundary Invasion in Subway PSD using Image Processing (영상처리를 이용한 지하철 스크린 도어의 경계선 침범인식 알고리듬 연구)

  • Baek, Woon-Seok;Lee, Ha-Woon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1051-1058
    • /
    • 2018
  • This paper propose image processing algorithm to prevent safety accidents near by subway platform screen door(PSD). First, edges of the subway PSD images are detected and the boundary line between PSD and subway platform is detected to decide people's approach to the PSD using Hough transform. To do this, we draw the boundary line between the PSD and platform, to detect the boundary line and to decide the people's approach to the detected line is completely connected or not. Generally, edge is the basic characteristic of image; thus, edge detection is very important in image processing applications and computer vision area. The conventional edge detection methods such as Roberts, Sobel, Prewitt, and Laplacian etc, which are using a fixed value of mask, and morphological gradient from the structuring element of view and Canny edge detector are widely used. In this paper, we propose the detection algorithm about the people's approach to the subway PSD to prevent the safety accidents by using Canny edge detector and Hough transform and the computer simulation shows the results.

Algorithm development of automatic symptom degree for Patient with Hallux Valgus (무지외반증 환자의 증상정도의 자동분류 알고리즘 개발)

  • Han, Hyun-Ji;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.96-102
    • /
    • 2011
  • In this study, we performed algorithm development of automatic symptom degree for patient with hallux valgus one of the representative foot disease of morden. And this study proposes an efficient automated technique that is different from the original analog diagnosis for treatment and surgery of hallux valgus using digital image process. And we used X-Ray images of both a normal and a patient with hallux valgus in the procedure. First, we marked the standard angle on the X-Ray image of normal through Overlap & Add technique. Then we created a standard image through thinning filter and roberts filter(edge detection algorithm). Second, we used sobel filter of edge detection algorithm on the X-Ray image of patient. Moreover, we went another overlap & add technique procedure with both normal and patient image that we made. With the output, we projected the display detection image onto the screen. Finally, with the display detection image, we could measure and project the diagnosis angle of hallux valgus. And this confirms that this method is much more practical and applicable for another orthopedics disease than the prior one.

A study on the discriminant analysis of node deployment based on cable type Wi-Fi in indoor (케이블형 Wi-Fi 기반 실내 공간의 노드 배치 판별 분석에 관한 연구)

  • Zin, Hyeon-Cheol;Kim, Won-Yeol;Kim, Jong-Chan;Kim, Yoon-Sik;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.836-841
    • /
    • 2016
  • An indoor positioning system using Wi-Fi is essential to produce a radio map that combines the indoor space of two or more dimensions, the information of node positions, and etc. in processing for constructing the radio map, the measurement of the received signal strength indicator(RSSI) and the confirmation of node placement information counsume substantial time. Especially, when the installed wireless environment is changed or a new space is created, easy installation of the node and fast indoor radio mapping are needed to provide indoor location-based services. In this paper, to reduce the time consumption, we propose an algorithm to distinguish the straight and curve lines of a corridor section by RSSI visualization and Sobel filter-based edge detection that enable accurate node deployment and space analysis using cable-type Wi-Fi node installed at a 3 m interval. Because the cable type Wi-Fi is connected by a same power line, it has an advantage that the installation order of nodes at regular intervals could be confirmed accurately. To be able to analyze specific sections in space based on this advantage, the distribution of the signal was confirmed and analyzed by Sobel filter based edge detection and total RSSI distribution(TRD) computation through a visualization process based on the measured RSSI. As a result to compare the raw data with the performance of the proposed algorithm, the signal intensity of proposed algorithm is improved by 13.73 % in the curve section. Besides, the characteristics of the straight and the curve line were enhanced as the signal intensity of the straight line decreased by an average of 34.16 %.

Automated radiation field edge detection in portal image using optimal threshold value (최적 문턱치 설정을 이용한 포탈영상에서의 자동 에지탐지 기법에 관한 연구)

  • 허수진
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.337-344
    • /
    • 1995
  • Because of the high energy of the treatment beam, contrast of portal films is very poor. Many image processing techniques have been applied to the portal images but a significant drawback is the loss of definition on the edges of the treatment field. Analysis of this problem shows that it may be remedied by separating the treatment field from the background prior to enhancement and uslng only the pixels within the field boundary in the enhancement procedure. A new edge extraction algorithm for accurate extraction of the radiation field boundary from portal Images has been developed for contrast enhancement of portal images. In this paper, portal image segmentation algorithm based on Sobel filtration, labelling processes and morphological thinning has been presented. This algorithm could automatically search the optimal threshold value which is sensitive to the variation of the type and quality of portal images.

  • PDF

Adaptive Real-Time Ship Detection and Tracking Using Morphological Operations

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.168-172
    • /
    • 2014
  • In this paper, we propose an algorithm that can efficiently detect and monitor multiple ships in real-time. The proposed algorithm uses morphological operations and edge information for detecting and tracking ships. We used smoothing filter with a $3{\times}3$ Gaussian window and luminance component instead of RGB components in the captured image. Additionally, we applied Sobel operator for edge detection and a threshold for binary images. Finally, object labeling with connectivity and morphological operation with open and erosion were used for ship detection. Compared with conventional methods, the proposed method is meant to be used mainly in coastal surveillance systems and monitoring systems of harbors. A system based on this method was tested for both stationary and non-stationary backgrounds, and the results of the detection and tracking rates were more than 97% on average. Thousands of image frames and 20 different video sequences in both online and offline modes were tested, and an overall detection rate of 97.6% was achieved.

Lane Detection Algorithm for Night-time Digital Image Based on Distribution Feature of Boundary Pixels

  • You, Feng;Zhang, Ronghui;Zhong, Lingshu;Wang, Haiwei;Xu, Jianmin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.188-199
    • /
    • 2013
  • This paper presents a novel algorithm for nighttime detection of the lane markers painted on a road at night. First of all, the proposed algorithm uses neighborhood average filtering, 8-directional Sobel operator and thresholding segmentation based on OTSU's to handle raw lane images taken from a digital CCD camera. Secondly, combining intensity map and gradient map, we analyze the distribution features of pixels on boundaries of lanes in the nighttime and construct 4 feature sets for these points, which are helpful to supply with sufficient data related to lane boundaries to detect lane markers much more robustly. Then, the searching method in multiple directions- horizontal, vertical and diagonal directions, is conducted to eliminate the noise points on lane boundaries. Adapted Hough transformation is utilized to obtain the feature parameters related to the lane edge. The proposed algorithm can not only significantly improve detection performance for the lane marker, but it requires less computational power. Finally, the algorithm is proved to be reliable and robust in lane detection in a nighttime scenario.