• Title/Summary/Keyword: SoC 설계

Search Result 1,015, Processing Time 0.035 seconds

Optimal Design of Network-on-Chip Communication Sturcture (Network-on-Chip에서의 최적 통신구조 설계)

  • Yoon, Joo-Hyeong;Hwang, Young-Si;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.80-88
    • /
    • 2007
  • High adaptability and scalability are two critical issues in implementing a very complex system in a single chip. To obtain high adaptability and scalability, novel system design methodology known as communication-based system design has gained large attention from SoC designers. NoC (Network-on-Chip) is such an on-chip communication-based design approach for the next generation SoC design. To provide high adaptability and scalability, NoCs employ network interfaces and routers as their main communication structures and transmit and receive packetized data over such structures. However, data packetization, and routing overhead in terms of run time and area may cost too much compared with conventional SoC communication structure. Therefore, in this research, we propose a novel methodology which automatically generates a hybrid communication structure. In this work, we map traditional pin-to-pin wiring structure for frequent and timing critical communication, and map flexible and scalable structure for infrequent, or highly variable communication patterns. Even though, we simplify the communication structure significantly through our algorithm the connectivity or the scalability of the communication modules are almost maintained as the original NoC design. Using this method, we could improve the timing performance by 49.19%, and the area taken by the communication structure has been reduced by 24.03%.

Dynamically Reconfigurable SoC 3-Layer Bus Structure (동적 재구성이 가능한 SoC 3중 버스 구조)

  • Kim, Kyu-Chull;Seo, Byung-Hyun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Growth in the VLSI process and design technology is resulting into a continuous increase in the number of IPs on a chip to form a system. Because of many IPs on a single chip, efficient communication between IPs is essential. We propose a dynamically reconfigurable 3-layer bus structure which can adapt to the pattern of data transmission to achieve an efficient data communication between various IPs. The proposed 3-layer bus can be reconfigured to multi-single bus mode, and single-multi bus mode, thus providing the benefits of both single-bus and multi-bus modes. Experimental results show that the flexibility of the proposed bus structure can reduce data transmission time compared to the conventional fixed bus structure. We incorporated the proposed bus structure in a JPEG system and verified that the proposed structure achieved an average of 22% improvement in time over the conventional fixed bus structure.

  • PDF

The Hardware Design of Real-time Image Processing System-on-chip for Visual Auxiliary Equipment (시각보조기기를 위한 실시간 영상처리 SoC 하드웨어 설계)

  • Jo, Heungsun;Kim, Jiho;Shin, Hyuntaek;Im, Junseong;Ryoo, Kwangki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1525-1527
    • /
    • 2013
  • 본 논문에서는 저시력자의 개선된 독서 환경을 제공하는 시각보조기기를 위한 실시간 영상처리 SoC(System on Chip) 하드웨어 구조 설계에 대해서 기술한다. 기존의 시각보조기기는 화면 영상이 실제 움직임보다 늦게 출력되는 잔상 현상이 발생하며, 색 변환 기능도 제한적이다. 따라서 본 논문에서 제안하는 실시간 영상처리 SoC 하드웨어 구조는 데이터 연산을 최소화함으로써 잔상 현상이 감소되며, 저시력자를 위한 다양한 색상 모드를 지원한다. 제안하는 영상처리 SoC 하드웨어 구조는 Core-A 모듈, Memory Controller 모듈, AMBA AHB bus 모듈, ISP(Image Signal Processing) 모듈, TFT-LCD Controller 모듈, VGA Controller 모듈, CIS Controller 모듈, UART 모듈, Block Memory 모듈로 구성된다. 시각보조기기를 위한 실시간 영상처리 SoC 하드웨어 구조는 Virtex4 XC4VLX80 FPGA 디바이스를 이용하여 검증하였으며, TSMC 180nm 셀 라이브러리로 합성한 결과 동작주파수는 54MHz, 게이트 수 197k이다.

Design of 868/915MHz SoC System Architecture for Wireless Personal Area Network (개인 무선 통신을 위한 868/915MHz SoC 시스템 구조 설계)

  • Park, Joo-Ho;Oh, Jung-Yeol;Ko, Young-Joon;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • According to development of wireless communication technologies, we need not only high data rate but low data rate system of low power consumption. This low data rate system is utilized in the field of home automation, health care, sensoring and monitoring, etc. IEEE 802.15.4 LR-WPAN system is the best choice for realizing ubiquitous networking system. In this paper SoC Architecture for IEEE 802.15.4 Low Rate WPAN is designed. IEEE 802.15.4 Low Rate WPAN system serves the functions and realization of home area network. We propose the SoC architecture for 868/915MHz frequency band of IEEE 802.15.4 Low Rate WPAN system. The key issue is to design SoC architecture which provides the function of Low Rate WPAN system to meet the requirement of IEEE 802.15.4 standards.

  • PDF

Design and Implementation of ARM based Network SoC Processor (ARM 기반의 네트워크용 SoC(System-on-a-chip) 프로세서의 설계 및 구현)

  • 박경철;박영원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.440-445
    • /
    • 2004
  • The design and implementation of a Network Processor using System-on-a-chip(SoC) technology is presented. The proposed network processor can handle several protocols as well as various types of traffics simultaneously. The proposed SoC consists of ARM processor core, ATM block, AAL processing block, Ethernet block and a scheduler. The scheduler guarantees QoS of the voice traffic and supports multiple AAL2 packet. The SoC is manufactured on the 0.35 micron fabrication line of HYNIX semiconductor, the total number of gates is about 312,000, for a maximum operating frequency of over to 50㎒.

Retiming for SoC Using Single-Phase Clocked Latches (싱글 페이즈 클락드 래치를 이용한 SoC 리타이밍)

  • Kim Moon-Su;Rim Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.1-9
    • /
    • 2006
  • In the System-on-Chip(SoC) design, the global wires are critical parts for the performance. Therefore, the global wires need to be pipelined using flip-flops or latches. Since the timing constraint of the latch is more flexible than it of the flip-flop, the latch-based design can provide a better solution for the clock period. Retiming is an optimizing technique which repositions memory elements in the circuits to reduce the clock period. Traditionally, retiming is used on gate-level netlist, but retiming for SoC is used on macro-level netlist. In this paper, we extend the previous work of retiming for SoC using flip-flops to retiming for SoC using single-phase clocked latches. In this paper we propose a MILP for retiming for SoC using single-phase clocked latches, and apply the fixpoint computation to solve it. Experimental results show that retiming for SoC using latches reduces the clock period of circuits by average 10 percent compared with retiming for SoC using flip-flops.

A Design of high performance SDRAM Controller for SoC design (SoC 설계용 고성능 SDRAM Controller 설계)

  • 권오현;양훈모;이문기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1209-1212
    • /
    • 2003
  • In this paper, we propose a SDRAM Controller. The SDRAM is often used a mainstream memory as embedded system memory due to its short latency, burst access and pipeline features. The proposed Controller provides essential functions for SDRAM initialization, read/write accesses, memory refresh and Burst access. Furthermore, the proposed controller is implemented in the form of SOFT IP. Therefore, it reduces the designer's effort greatly.

  • PDF

정밀측위.통신용 임펄스 UWB SoC 설계기술

  • Kim, Cheon-Su;Kim, Jae-Yeong
    • Information and Communications Magazine
    • /
    • v.25 no.12
    • /
    • pp.19-25
    • /
    • 2008
  • 유비쿼터스 홈, 인명 방재, 지능형 로봇 등에 응용하기 위한 IEEE 802.15.4a 시스템은 실내에서 1m 이하의 측위 기능, 수Kbps ${\sim}$ 수Mbps의 통신 기능, 4개 이상의 SOP (Simultaneous Operating Pico-net), 30m이상의 통신거리 및 저전력을 요구한다. 이러한 표준을 수용하는 정밀측위 기능과 통신기능을 동시에 가지는 임펄스UWB SoC설계, 제작 및 시험기술에 대해서 언급하였다.

The VoIP System on Chip Design and the Test Board Development for the Function Verification (VoIP 시스템 칩 설계 및 기능 검증용 보드 개발)

  • 소운섭;황대환;김대영
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.990-994
    • /
    • 2003
  • This paper describes the VoIP(Voice over Internet Protocol) SoC(System on Chip) Design and the test board development for the function verification to support voice communication services using Internet. To implement the simple system of configuration, we designed the VoIP SoC which have ARM922T of 32bit microprocessor, IP network interface, voice signal interface, various user interface function. Also we developed test program and communication protocol to verify the function of this chip. We used several tools of design and simulation, developed and tested a test board with Excalibur which includes ARM922T microprocessor and FPGA.

  • PDF

A SOC Design Methodology using SystemC (SystemC를 이용한 SOC 설계 방법)

  • 홍진석;김주선;배점한
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.153-156
    • /
    • 2000
  • This paper presents a SOC design methodology using the newly-emerging SystemC. The suggested methodology firstly uses SystemC to define blocks from the previously-developed system level algorithm with internal behavior and interface being separated and validate such a described blocks' functionality when integrated. Next, the partitioning between software and hardware is considered. With software, the interface to hardware is described cycle-accurate and the other internal behavior in conventional ways. With hardware, I/O transactions are refined gradually in several abstraction levels and internal behavior described on a function basis. Once hardware and software have been completed functionally, system performance analysis is performed on the built model with assumed performance factors and influences such decisions regressively as on optimum algorithm selection, partitioning and etc. The analysis then gives constraint information when hardware description undergoes scheduling and fixed-point trans- formation with the help of automatic translation tools or manually. The methodology enables C/C++ program developers and VHDL/Verilog users to migrate quickly to a co-design & co-verification environment and is suitable for SoC development at a low cost.

  • PDF