• Title/Summary/Keyword: SnS thin films

Search Result 108, Processing Time 0.033 seconds

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Synthesis and Characterization of Tin Nitride Thin Films Deposited by Low Nitrogen Gas Ratio

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.173.2-173.2
    • /
    • 2014
  • Thin nitride thin films were synthesized by reactive radio-frequency magnetron sputtering in the ultra high vacuum (UHV) chamber. To control the characteristics of thin films, tin nitride thin films were obtained various argon and nitrogen gas mixtures, especially low nitrogen gas ratios. Tin nitride thin films were analyzed with alpha step, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and 4 point probe measurement. The result of alpha step and SEM showed that the thickness of thin nitride thin films were decreased with increasing nitrogen gas ratios. The metallic tin structure was decreased and the amorphous tin nitride structure were observed by XRD with higher nitrogen gas ratios. The oxidation state of tin and nitride were studied with high resolution Sn 3d and N 1s XP spectra.

  • PDF

Characterization of $Cu_2ZnSnSe_4$ thin film produced by selenization of metallic precursor (금속 프리커서의 셀렌화에 의한 $Cu_2ZnSnSe_4$ 박막의 특성)

  • Amal, M. Ikhlasul;Alfaruqy, M. Hilmy;Jang, Yun-Jung;Kim, Kyoo Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.85.2-85.2
    • /
    • 2010
  • $Cu_2ZnSnSe_4$ (CZTSe) is one of candidate to alternate $Cu(In,Ga)Se_2$ as solar absorber material for solar cell. The expensive elements of In and Ga are replaced by Zn and Sn, respectively to lower the material cost. In this study we fabricated CZTSe thin film by selenization of single precursor layer consisted metallic constituent. Precursor compositions ratio were selected to have Cu-poor and Zn-rich content and prepared by RF magnetron sputtering. Thermal processing was applied to introduce selenium into as-deposited films at temperatures ranging from 350 to 500 for time up to 120 minutes. Single precursor films showed amorphous structure and consist of individual elements of Cu, Zn, and Sn. It was confirmed by XRD analysis that synthesis of CZTSe compound is occurred from lower temperature process, although concurrently additional phases such as binary cooper selenides are also existed. The quality of CZTSe crystal was improved as temperature increased. We also investigated the optical and electrical properties of as-selenized CZTSe as well.

  • PDF

Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors (스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가)

  • Lee, Ju Yeon;Kim, In Young;Minhao, Wu;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.

ION BEAM AND ITS APPLICATIONS

  • Koh, S.K.;Choi, S.C.;Kim, K.H.;Cho, J.S.;Choi, W.K.;Yoon, Y.S.;Jung, H.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.110-114
    • /
    • 1997
  • Development of metal ion source growth of high quality Cu metal film formation of non-stoichiometric $SnO_2$ films of Si(100), and modification fo polymer surface by low enregy ion beam have been carried out at KIST Ion Beam Lab. A new metal ion source with high ion beam flux has been developed by a hybrid ion beam (HIB) deposition and non-stoichiometric $SnO_2$ films are controlled by supplying energy. The ion assisted reaction (IAR) in which keV ion beam is irradiated in reactive gas environment has been deveolped for modifying the polymers and enhancing adhesion to other materials and advantages of the IAR have been reviewed.

  • PDF

Ferroelectric properties of $Pb[(Zr,Sn)Ti]NbO_3$ Thin Films by Annealing (열처리에 따른 $Pb[(Zr,Sn)Ti]NbO_3$ 박막의 강유전 특성)

  • 최우창;최혁환;이명교;권태하
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.24-27
    • /
    • 2000
  • Ferroelectric P $b_{0.99}$〔(Z $r_{0.6}$S $n_{0.4}$)$_{0.9}$ $Ti_{0.1}$$_{0.98}$N $b_{0.02}$ $O_3$(PNZST) thin films were deposited by a RF magnetron sputtering on (L $a_{0.5}$S $r_{0.5}$)Co $O_3$(LSCO)/Pt/Ti/ $SiO_2$/Si substrate using a PNZST target with excess PbO of 10 mole%. The thin films deposited at the substrate temperature of 500 $^{\circ}C$ were crystallized to a perovskite phase after rapid thermal annealing(RTA) The thin films annealed at 650 $^{\circ}C$ for 10 seconds in air exhibited the good crystal structures and ferroelectric properties. The remanent polarization and coercive field of the PNZST capacitor were about 20 $\mu$C/$\textrm{cm}^2$ and 50 kV/cm, respectively. The reduction of the polarization after 2.2$\times$10$^{9}$ switching cycles was less than 10 %.0 %.%.0 %.0 %.

  • PDF

Compositional Study of Surface, Film, and Interface of Photoresist-Free Patternable SnO2 Thin Film on Si Substrate Prepared by Photochemical Metal-Organic Deposition

  • Choi, Yong-June;Kang, Kyung-Mun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • The direct-patternable $SnO_2$ thin film was successfully fabricated by photochemical metal-organic deposition. The composition and chemical bonding state of $SnO_2$ thin film were analyzed by using X-ray photoelectron spectroscopy (XPS) from the surface to the interface with Si substrate. XPS depth profiling analysis allowed the determination of the atomic composition in $SnO_2$ film as a function of depth through the evolution of four elements of C 1s, Si 2p, Sn 3d, and O 1s core level peaks. At the top surface, nearly stoichiometric $SnO_2$ composition (O/Sn ratio is 1.92.) was observed due to surface oxidation but deficiency of oxygen was increased to the interface of patterned $SnO_2/Si$ substrate where the O/Sn ratio was about 1.73~1.75 at the films. This O deficient state of the film may act as an n-type semiconductor and allow $SnO_2$ to be applied as a transparent electrode in optoelectronic applications.

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Study on the Electrical Characteristics of SnO2 on p-Type and n-Type Si Substrates (기판의 종류에 따른 SnO2 박막의 전기적인 특성 연구)

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • $ISnO_2$ thin films were prepared on p-type and n-type Si substrates to research the interface characteristics between $SnO_2$ and substrate. After the annealing processes, the amorphous structure was formed at the interface to make a Schottky contact. The O 1s spectra showed the bond of 530.4 eV as an amorphous structure, and the Schottky contact. The analysis by the deconvoluted spectra was observed the drastic variation of oxygen vacancies at the amorphous structure because of the depletion layer is directly related to the oxygen vacancy. $SnO_2$ thin film changed the electrical properties depending on the characteristics of substrates. It was confirmed that it is useful to observe the Schottky contact's properties by complementary using the XPS analysis and I-V measurement.

  • PDF