• Title/Summary/Keyword: SnO thin film

Search Result 361, Processing Time 0.029 seconds

Electrical and Optical Properties of Sb-doped SnO2 Thin Films Fabricated by Pulsed Laser Deposition (펄스레이저 공정으로 제조한 Sb가 도핑된 SnO2 박막의 전기적 및 광학적 특성)

  • Jang, Ki-Sun;Lee, Jung-Woo;Kim, Joongwon;Yoo, Sang-Im
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • We fabricated undoped and Sb-doped $SnO_2$ thin films on glass substrates by a pulsed laser deposition (PLD) process. Undoped and 2 - 8 wt% $Sb_2O_3$-doped $SnO_2$ targets with a high density level of ~90% were prepared by the spark plasma sintering (SPS) process. Initially, the effects of the deposition temperature on undoped $SnO_2$ thin films were investigated in the region of $100-600^{\circ}C$. While the undoped $SnO_2$ film exhibited the lowest resistivity of $1.20{\times}10^{-2}{\Omega}{\cdot}cm$ at $200^{\circ}C$ due to the highest carrier concentration generated by the oxygen vacancies, 2 wt% Sb-doped $SnO_2$ film exhibited the lowest resistivity value of $5.43{\times}10^{-3}{\Omega}{\cdot}cm$, the highest average transmittance of 85.8%, and the highest figure of merit of 1202 ${\Omega}^{-1}{\cdot}cm^{-1}$ at $400^{\circ}C$ among all of the doped films. These results imply that 2 wt% $Sb_2O_3$ is an optimum doping content close to the solubility limit of $Sb^{5+}$ substitution for the $Sb^{4+}$ sites of $SnO_2$.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials (직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구)

  • Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

H2S Gas Sensing Properties of SnO2:CuO Thin Film Sensors Prepared by E-beam Evaporation

  • Sohn, Jae-Cheon;Kim, Sung-Eun;Kim, Zee-Won;Yu, Yun-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.135-139
    • /
    • 2009
  • $H_2S$ micro-gas sensors have been developed employing $SnO_2$:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that $SnO_2$ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of $SnO_2$, inhibit grain growth of $SnO_2$ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to $H_2S$ gas at 1 ppm in air at an operating temperature of $350^{\circ}C$ and had a short response time of 8 sec.

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • Gang, Myeong-Gil;Hong, Chang-U;Yun, Jae-Ho;Gwak, Ji-Hye;An, Seung-Gyu;Mun, Jong-Ha;Kim, Jin-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

Microfabrication of Thin Film Sensor with Metal Oxide Nanostructure and Their Gas Sensing Properties (금속 산화물 나노구조형 마이크로 박막 센서의 제작 및 가스 응답 특성)

  • Kang Bong-Hwi;Lee Sang-Rok;Song Kap-Duk;Joo Byung-Su;Lee Duk-Dong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.13-18
    • /
    • 2006
  • [ $SnO_2$ ] and ZnO nanostructures were grown on the surface of thin film by heat treatment of metal Sn, Zn under Ar gas flow and $O_2$ at atmospheric pressure, respectively. The sensitivity of the $SnO_2$ thin film device on which grown nanowires to CO gas(5,000 ppm) was 50 % at the operating temperature of $200^{\circ}C$. In case of using Pt as catalysts, the sensitivity was enhanced and operating temperature was reduced(73 % at $150^{\circ}C$ ). The sensitivity of the ZnO nanorods device using Cu as catalysts to NOx gas was 90 % at the operating temperature of $200^{\circ}C$. It was found that the sensitivity to CO and NOx gases for the device on which grown nanostructures was much higher than those for general thin film device.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Fabrication of SnOx/Pt Thin Film Gas Sensors and Their Sensing Characteristics (SnOx/Pt 薄膜 가스感知素子의 製造 및 그 感知特性)

  • Lee, Sung-Pil;Chung, Wan-Young;Lee, Duk-Dong;Sohn, Byung-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1315-1322
    • /
    • 1988
  • $SnO_X$/Pt thin film gas sensors were fabricated and their performance characteristics were measured. The $SnO_X$/Pt films were deposited by vacuum evaporating the $SnO_2$ target mixed with 2 wt% Pt. The conductivity showed the temperature dependence and the sensitivity to CO gas was proportional to the square root of gas concentration below 2000 ppm. The optimum operating temperature of the fabricated devices was about 300$^{\circ}$C and the response time in 5000 ppm CO gas was about 20 sec.

  • PDF

Electrical and Optical Properties of ZnO/$SnO_2$:F Thin Films under the Hydrogen Plasma Exposure (ZnO/$SnO_2$:F 박막의 수소플라즈마 처리에 따른 전기적.광학적 특성 변화)

  • Kang, Gi-Hwan;Song, Jin-Soo;Yoon, Kyung-Hoon;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1147-1149
    • /
    • 1993
  • ZnO/$SnO_2$:F bilayer films have been prepared by pyrosol deposition method to develop optimum transparent electrode for use in amorphous silicon solar cells. The solution for $SnO_2:F$ film was composed of $SnCl_4{\cdot}5H_2O,\;NH_4F,\;CH_3OH$ and HCl, and ZnO films have been deposited on the $SnO_2:F$ films by using the solution of $ZnO(CH_3COO){_2}{\cdot}2H_2O,\;H_2O\;and\;CH_3OH$. These films have been investigated the variation of electrical and optical properties under the hydrogen plasma exposure. The sheet resistance of the $SnO_2:F$ film was sharply increased and its transmittance was decreased with the blackish effect after plasma treatment. However, the ZnO/$SnO_2:F$ bilayer film was shown hydrogen plasma durability because the electrical and optical properties was almost unchanged more then 60 seconds exposure time.

  • PDF