Microfabrication of Thin Film Sensor with Metal Oxide Nanostructure and Their Gas Sensing Properties

금속 산화물 나노구조형 마이크로 박막 센서의 제작 및 가스 응답 특성

  • Kang Bong-Hwi (Dept. of Cyber Police Secirity, Taegu Science College) ;
  • Lee Sang-Rok (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Song Kap-Duk (Mobile Display Research Center, Kyungpook National University) ;
  • Joo Byung-Su (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Lee Duk-Dong (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 강봉휘 (대구과학대학 경찰사이버보안과) ;
  • 이상록 (경북대학교 전자전기컴퓨터학부) ;
  • 송갑득 (경북대학교 모바일 디스플레이 산학연 센터) ;
  • 주병수 (경북대학교 전자전기컴퓨터학부) ;
  • 이덕동 (경북대학교 전자전기컴퓨터학부)
  • Published : 2006.08.01

Abstract

[ $SnO_2$ ] and ZnO nanostructures were grown on the surface of thin film by heat treatment of metal Sn, Zn under Ar gas flow and $O_2$ at atmospheric pressure, respectively. The sensitivity of the $SnO_2$ thin film device on which grown nanowires to CO gas(5,000 ppm) was 50 % at the operating temperature of $200^{\circ}C$. In case of using Pt as catalysts, the sensitivity was enhanced and operating temperature was reduced(73 % at $150^{\circ}C$ ). The sensitivity of the ZnO nanorods device using Cu as catalysts to NOx gas was 90 % at the operating temperature of $200^{\circ}C$. It was found that the sensitivity to CO and NOx gases for the device on which grown nanostructures was much higher than those for general thin film device.

Sn과 Zn 금속을 이용해 각각 산소와 아르곤 가스를 주입한 대기압 분위기에서 열처리를 통해 $SnO_2$와 ZnO 나노박막을 형성시켰다. 나노구조로 형성된 $SnO_2$ 박막의 경우 CO 가스(5,000 ppm)에 대해 $200^{\circ}C$의 동작온도에서 약 50 %의 감도를 나타내었으며, $SnO_2$ 나노 금속산화물에 Pt 금속을 이온 코팅법에 의해 첨가한 박막의 경우에는 동작온도 $150^{\circ}C$에서 73 %의 높은 감도를 얻을 수 있었다. 순수 ZnO 나노 박막의 경우 NOx(20 ppm) 가스에 대해 낮은 감도를 나타내었으나, Cu를 이온 코팅법에 의해 첨가한 박막의 경우에는 동작온도 $200^{\circ}C$에서 90 %의 높은 감도를 나타내었다. 나노 구조가 아닌 $SnO_2$와 ZnO 박막이 가지는 CO와 NOx에 대한 가스 감도에 비해 매우 높은 감도를 가짐을 알 수 있었다.

Keywords

References

  1. Z. L. Wang, 'Nanobelts, nanowires, and nanodiskettes of semiconducting oxides' Materials to nanodevices, Adv. Mater. vol. 15, pp. 432-436, 2003 https://doi.org/10.1002/adma.200390100
  2. J. X. Wang, D. F. Liu, et al, 'Growth of $SnO_2 $nanowires with uniform branched structures', Solid State Communications. vol. 130, pp. 89-94, 2004 https://doi.org/10.1016/j.ssc.2004.01.003
  3. C. M. Carney. S. Yoo and S. A. Akbar, '$TiO_2-SnO_2 $nanostructures and their $H_2 $ sensing behavior', Sensors and Actuators B. vol. 108, pp. 29-33, 2005 https://doi.org/10.1016/j.snb.2004.11.058
  4. Y. Chean, X. Cui, K. Zhang, D. Pan, S. Zhang, B. Wang and J. G. Hou, 'Bulk-quantity synthesis and self-catallytic VLS growth of $SnO_2$ nanowires by lower-temperature evaporation', Chemical Physics letters. vol. 369, pp 16-20. 2003 https://doi.org/10.1016/S0009-2614(02)01949-8
  5. Z. W. Pan, Z. R. Dai, and Z. L. Wang, 'Nanobelts of semiconducting oxides', Science. vol. 291, pp. 1947-1949, 2001 https://doi.org/10.1126/science.1058120
  6. M. Z. Atashbar . S. Singamaneni, 'Room temperature gas sensor based on metallic nanowires' Sensors and Actuators B , vol. 111-112, pp. 13-21, 2005 https://doi.org/10.1016/j.snb.2005.07.034
  7. B. C. Tofield, Solid State Gas Sensors, Adam Hilger, Bristol and Philadelphia pp. 213-221, 1987
  8. G. H. Lee et al., 'Fabrication of chestnut bur-like particles covered with ZnO nanowires', Journal of Crystal Growth, vol. 277, Issues 1-4, pp. 15-19, 2004 https://doi.org/10.1016/j.jcrysgro.2004.12.134