H₂S Gas Sensing Properties of SnO₂:CuO Thin Film Sensors Prepared by E-beam Evaporation

Jae Cheon Sohn, Sung Eun Kim, Zee Won Kim, and Yun Sik Yu*
Convergence of IT Devices Institute Busan, Dong-Eui University, Busan 614-714, Republic of Korea

(Received July 27 2009, Revised August 11 2009, Accepted August 17 2009)

H₂S micro-gas sensors have been developed employing SnO₂:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that SnO₂ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of SnO₂, inhibit grain growth of SnO₂ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to H₂S gas at 1 ppm in air at an operating temperature of 350°C and had a short response time of 8 sec.

Keywords: Gas sensor, Micromachining, Hydrogen sulphide (H₂S), Tin oxide (SnO₂)

1. INTRODUCTION

The monitoring and control of toxic H_2S gas is important in laboratories and industrial areas where it is used as a process gas or generated as a byproduct. Semiconductor SnO_2 -based gas sensors are widely reported in the literature [1-13]. These sensors work on the principle of a change in electrical conductance on exposure to the gas which is to be detected. Desirable characteristics of a gas sensor are high sensitivity, fast response time, fast recovery time, selectivity and long-term stability. Sensors based on pure SnO_2 show good sensitivity but the selectivity has been reported to be poor as the sensors respond to all reducing gases in similar manner. In order to obtain selectivity and to improve sensitivity, SnO_2 has been doped with different elements like Pt, Pd, Ag, Cu, etc.

The CuO-doped SnO₂ thick films are found to exhibit extraordinary sensing characteristics for H₂S. However, the response time is found to be in the range of $5\sim15 \min[3,5-7]$, which appears to be large from the applications point of view. The microstructure of these thick films consists of fine CuO particles dispersed on the surface of SnO2 particles. Since the response time depends on the diffusion of gas into the sensor film, one would expect thin filmbased sensors to have better response times. Furthermore, for simultaneous detection of many gases, it is desirable to prepare sensor arrays with on-chip processing electronics[8] and thick film processes are not suitable for fabrication of such integrated gas sensors. The technique of CuO dispersion on SnO₂ grains used to prepare thick film sensors for H₂S detection cannot be utilized for thin films. Therefore, the possibility of fabricating SnO₂:CuO sensors in thin film form with a high sensitivity to H2S needs to be investigated. In a recent study, ultrathin over-layers of Cu were deposited on sputter deposited SnO₂ thin films and the sensitivity of the films to CO, H₂ and Cl₂ was studied[12]. It was found that the selectivity of response to different gases is improved on addition of Cu. The amount of copper

deposited in this case is reported to be insufficient to cover the SnO₂ grains and the improvement in selectivity of response has been attributed to changes in Fermi level of in the SnO₂. Lee[14] has studied the effect of Pt addition on SnO₂ thin film sensors prepared by reactive beam evaporation. These sensors are highly sensitive to many reducing gases including H2 and CO in contrast to CuO doped sensors that show high selectivity[12]. Tamaki et al.[6] have reported pure SnO2 and SnO2:CuO thin film sensors prepared by low pressure evaporation followed by calcinations in air. The films were found to have a porous structure and the addition of CuO improved sensitivity to H₂S, yielding sensors that could detect 0.02 ppm of H₂S in air. In other studies[15], H₂S sensing properties of CuO/SnO₂ heterostructures have been reported and the diffusion of Cu in SnO2 has been studied. Cu is seen to significantly diffuse in SnO₂ at a temperature of 573 K. It is observed that the transition layer formed by inter-diffusion of CuO and SnO2 is responsible for the high sensitivity to H₂S. Rumyantseva et al.[16] have also compared the H₂S sensing properties of pure and Cu doped SnO₂ thin films. They report that CuO addition significantly improves the response to H₂S while reducing that to CO and C₂H₅OH. They did not find any CuO phase in the SnO₂:CuO films.

To summarize, both pure and doped SnO₂-based sensors using thin/thick films and bulk materials have been reported. Pure SnO₂ sensors are reported to have high sensitivity but poor selectivity to H₂S and therefore preparation of CuO doped sensors with high selectivity is desirable. In earlier reports, most of the studies (on SnO2:CuO) have been carried out on thick films prepared by impregnation technique where CuO is dispersed on prepared SnO₂ particles and thereby CuO and SnO2 particles remain separate in the preparation technique. In the case of thin films, the microstructure is expected to be different (and may depend on the preparation technique) as the possibility of interaction between SnO2 and CuO leading to a homogeneous phase exists[15,16] and one may not expect CuO to be dispersed around SnO₂ grains. This may also result in a different mechanism of H₂S detection. Therefore, a study of microstructure in thin films is desirable.

^{*} Author to whom corresponding should be addressed: electronic mail: ysyu@deu.ac.kr

In this paper, bridged silicon membranes with varying thickness were designed and fabricated by combining silicon processes and MEMS technologies. A CuO-SnO₂ composite thin film was prepared by thermal oxidation of a Cu/Sn double layer on the oxidized silicon substrate with a heater and sensing electrode[17]. The characteristics of the CuO-SnO₂ composite thin film with respect to H₂S gas were measured with an injective-type measurement system. The sensitivity and selectivity to H₂S of the sensing film were tested and the results were compared with its sensitivity to other gases (CO, NH₃, SO₂, H₂). Moreover, the microstructures and physical properties of the sensing film were investigated with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometer (XRD).

2. EXPERIMENTS

Silicon bridge type integrated micro-gas sensors were fabricated by employment of a 2-in. p-type (100) wafer with a resistivity of 3 \sim 5 Ω cm and a thickness of 300 μ m. Figure 1 shows a cross-sectional view of the silicon bridge type micro-gas sensor array element. Firstly, silicon was oxidized at the temperature of 1100°C for 4 h in ambient steam. The resulting oxide film showed a thickness of 1.2 µm and was used as a protective layer during the silicon back-side etching in KOH solution. After the opening of the oxide etching window by photolithography, KOH etching was carried out. The back side oxide etching was carried out in a BHF (6:1 = NH₄F:HF) solution for 13 min and silicon was anisotropically etched in a KOH solution of 25 wt.% at 80°C. Etching time was monitored through the designed etch stop of bulk silicon. It took about 175 min for the 10 µm membrane with an etch rate of 1.65 µm/min.

An AZ 5214 photo-resist was used for the patterning of heater and sensing electrodes, and then Ti(100 Å)/Pt(2000 Å) were subsequently deposited by e-beam evaporation in a high vacuum of 5×10^{-5} Torr. The formation of heater and sensing electrodes was achieved by the lift-off process. After the formation of heater and sensing electrodes, the sample was annealed for one hour at 600°C in ambient N_2 . The Ti/Pt heater showed good electrical properties and mechanical stability through the annealing process, as reported in other studies[18].

 SnO_2 :CuO sensing double layers were prepared by the following processes; the active region was defined by lift-off. The sensing materials, which consist of an Sn/Cu double layer (100/20 nm, respectively), were deposited in a high vacuum of 9×10^{-6} Torr by an e-beam evaporation method. The sensing film was also formed by lifting off the

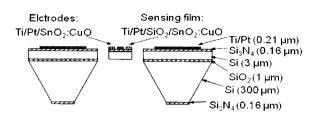


Fig. 1. Cross-sectional view of micro-gas sensor element.

photoresistor by dipping the sample in acetone. Through the same lift-off process, a Sn/Cu double layer (100/20 nm, respectively) was formed on the predefined active region.

In order to fabricate a silicon bridge type membrane, a silicon reactive ion etching (RIE) window was opened by photolithography. Then, RIE using SF_6/Ar (25/25 sccm) plasma in a vacuum of 100 mTorr was carried out with an rf power of 100 W for 7 min.

Finally, the sample was oxidized at 700°C for 5h in ambient O₂. The samples with proposed SnO₂:CuO sensing films were realized through a series of simple process steps such as subsequent deposition and simultaneous oxidation of Sn/Cu double layers[19].

The active area, which is a suspended membrane with a thickness of 10 μ m and a size of 85 μ m \times 75 μ m, was isolated by micro-machining technology. A SnO₂:CuO sensing area was defined by a 77 μ m \times 23 μ m region on the suspended active area.

After the final fabrication step, the sample was attached on the packaging holder using silver paste and mounted on standard TO-5 packages to carry out the electrical characterization. The characteristics of packaged samples were tested in an injection type reaction chamber with a 3,040 cm³ volume (Fig. 2). Before the beginning of test, each sensor was maintained for about 1 h for the stabilization of the sensor in the chamber.

The magnitude of the response was defined as the change in resistance of the sample on exposure to gas. It was expressed by the following relation [1,8]:

$$S = (R_g - R_a) / R_a$$

where R_a is the resistance of the sensing element in fresh air, R_g is the resistance of the sensing element in a given target gas. The result of the response measurement was automatically monitored by the use of DAQ Board.

The microstructures, binding energies and crystal structures of the sensing film were investigated using SEM, XPS, and XRD, respectively.

3. RESULTS AND DISCUSSION

3.1 H₂S sensing properties

In order to determine the optimum operating temperature of sensor films, the response of a 100 nm film was measured at different temperatures. The response curves

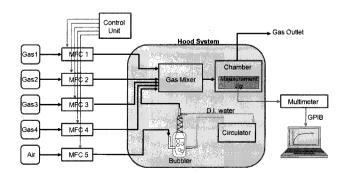


Fig. 2. Block diagram of apparatus for sensing properties.

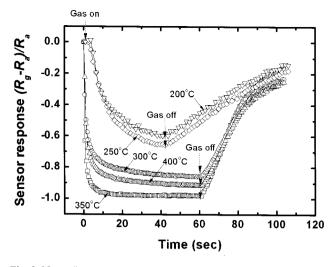


Fig. 3. Normalized response of a 100 nm film on exposure to 1 ppm of H_2S gas at temperatures of 200, 250, 300, 350, and 400°C.

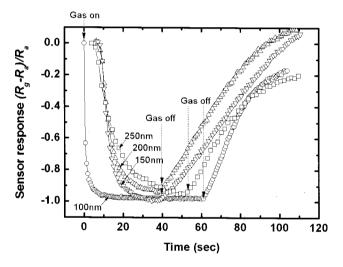


Fig. 4. Response curve for 100, 150, 200, and 250 nm thick SnO₂:CuO films exposed on 1 ppm H₂S gas and then exposed to air.

plotted as normalized resistance (maximum value of steady-state resistance obtained in air) versus time are shown in Fig. 3. It is seen that the film has a maximum sensitivity in the temperature range of $300 \sim 400^{\circ}\text{C}$ and a minimum response time for operation at $350 \sim 400^{\circ}\text{C}$. The optimum operating temperature was determined to be as 350°C .

Typical response curves, recorded for 100 and 250 nm thin films on exposure to 1 ppm H_2S are shown in Fig. 4. The response time of the sensors was seen to increase with film thickness. For 100 nm film, the absolute values of resistances in air and in 1 ppm H_2S were 250 M Ω and 10 K Ω , respectively, yielding an absolute value of sensitivity of 0.99996. The high sensitivity of the films is similar to that reported for thick film-based SnO_2 :CuO sensors[4,5]. The sensitivity was found to be independent of film thickness. The response times for 100 and 250 nm thick films were found to be 8 and 50 s, respectively. However, the recovery times were observed to be nearly same for both films, i.e. 40 and 50 s, respectively. The response times in this study are faster than those reported for thick films.

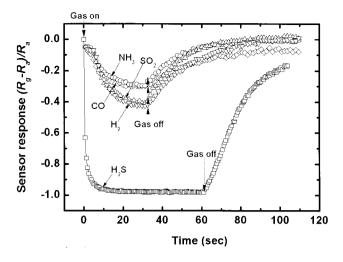


Fig. 5. Response of a 100 nm thick SnO_2 :CuO sensor to 1 ppm H_2S , 1,000 ppm H_2 , 100 ppm SO_2 , 100 ppm CO, and 100 ppm NH_3 .

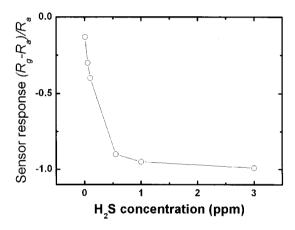


Fig. 6. Sensing characteristics of the SnO₂:CuO film to H₂S gas at 350°C.

In order to check the selectivity toward H₂S, the sensors were exposed to other gases like CO, NH₃, SO₂ and H₂ and the response was recorded as a function of time. Figure 5 shows the response of a typical sensor operating at 350°C, to 1,000 ppm H₂, 100 ppm SO₂, 100 ppm CO and 100 ppm NH₃. High selectivity of SnO₂:CuO thin film sensors to H₂S is evident from this figure. The sensors did not show a significant response to NH₃ and CO either.

Figure 6 shows the sensor response measured for different H_2S concentrations in the $0.1 \sim 3$ ppm range. The steady-state resistance plotted as a function of concentration for a 100 nm thick SnO_2 :CuO film has been found to have a non-linear dependence on H_2S concentration, which was seen to saturate at concentrations higher than 0.6 ppm. It is noticeable that the film is highly sensitive to H_2S even at a low concentration level.

3.2 Microstructure of the thin film sensors

As shown in Fig. 7, an SEM micrograph of the SnO_2 : CuO composite thin film taken at different magnifications showed the polycrystalline nature of the film with an average grain size of $< 0.5 \mu m$. The small particle

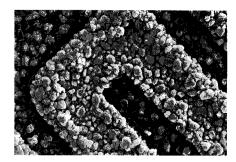


Fig. 7. SEM photographs of the CuO-SnO₂ thin films deposited on microheater

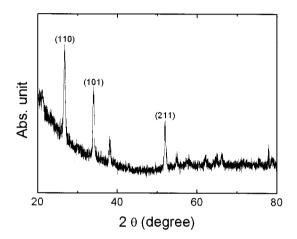


Fig. 8. XRD patterns of the SnO_2 :CuO thin films oxidized at $700^{\circ}C$ for 5h in O_2 ambient.

sizes like these are very desirable for high sensitivity because they give rise to a surface area for exposure to gas[20].

The XRD pattern of the $CuO-SnO_2$ thin film oxidized at $700^{\circ}C$ for 5 h in ambient O_2 is shown in Fig. 8. The sample was identified to be a polycrystalline SnO_2 film with tetragonal symmetry.

No shift in the SnO₂ peak positions was observed, which indicated that CuO does not react with SnO2. Considering the results above, it can be concluded that the deposition of a very thin Cu layer on a Sn film has a negligible influence on the crystalline structure. Due to an absence of interaction between SnO₂ and CuO, during the high temperature oxidation of SnO2:CuO films, CuO is precipitated out of the SnO₂ grains. The CuO grains residing between SnO₂ grains, inhibits the growth of SnO₂ as well as forming a network of p-n junctions. Since CuO and SnO₂ are p- and n-type semiconductors, respectively, a p-n junction forms at each interface between CuO and SnO2 grains, which induces an electron depleted space charge layer at the surface of SnO₂. This leads to a high resistance of the film in air. On exposure to H2S, the CuO is converted into CuS via the reaction CuO+H₂S→CuS+H₂O[4,5]. CuS, being metallic in character, destroys the p-n junctions and brings about a large drop in resistance. When the H₂S supply is turned off, CuS gets quickly oxidized to CuO by the reaction $2CuS+3O_2 \rightarrow 2CuO+2SO_2$, and the p-n junctions are restored[4,5]. The evolved microstructure of SnO2:CuO films consisting of a network of SnO₂ and CuO grains is shown schematically in Fig. 9.

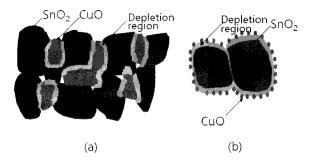


Fig. 9. Schematic representation of the microstructure of: (a) SnO₂:CuO thin films employed in the present studies; (b) thick films prepared by impregnation or chemical fixation techniques as reported other groups.

For comparison, the reported microstructure of thick films consisting of SnO₂ grains covered with thin CuO layer is also shown here. The granular nature of films in the present case is supported by SEM of Fig. 7. Lalande et al.[21] have also reported segregation of CuO to the grain boundaries of SnO₂ grains in SnO₂:CuO system. The difference in microstructure of thin and thick films, i.e. independent grain structures compared to CuO covered SnO₂ grains is expected to arise from the difference in preparation technique. Existence of such a difference in microstructure is independently shown by results of an XPS study.

As shown in Fig. 10(a) and (b), the Cu 2p and Sn 3d spectrum of as-prepared films show peak positions at binding energies of 940.069 and 495.545 eV that almost

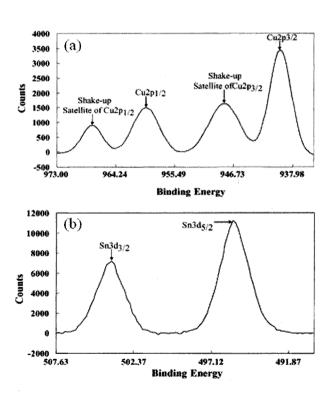


Fig. 10. XPS spectra of SnO_2 :CuO: (a) Cu 2p XPS spectra and (b) Sn 3d XPS spectra.

correspond to pure CuO and SnO₂[22], respectively. It seems that the oxidation at 700°C for 5 h is enough to oxidize the surface of the metallic Cu/Sn double layer in CuO:SnO₂ composite thin film. This XPS measurement result may be compared to the data reported by Tamaki et al.[5], and Yamazoe et al.[3], on SnO2:CuO thick films where a little shift in BE was found. The difference in BE for thin and thick films may be explained on the basis of different microstructures (Fig. 9). It is noted that the photoelectrons detected in XPS studies originate within ~ 5 nm of the top surface. Consequently, photo-electrons from SnO2 in the case of thick films (Fig. 9(b)) originate predominantly from the depletion region (that completely covers all SnO₂ grains). As discussed by Tamaki et al.[5], bands of SnO2 are bent upwards in the depletion region, so that the observed BE is reduced. In the case of the thin films in the present study (Fig. 9(a)), photo-electrons originate predominantly from the bulk SnO2, so that no shift in BE is expected as observed experimentally.

4. CONCLUSIONS

The present study demonstrates the development of H₂S sensors based on SnO₂:CuO thin films, which were prepared by photolithography, bulk micromachining and Ebeam evaporation techniques. These sensors exhibited very high sensitivity and fast response and recovery times. The film thickness is found to be a controlling parameter in achieving faster response and recovery times. The nonreacting character of SnO₂ and CuO, which unambiguously confirmed by XRD and XPS measurements, allows formation of a microstructure in which SnO2 and CuO forms an array of p-n junctions. The film showed high selectivity to H₂S gas compared with other gases like CO, NH₃, SO₂ and H₂. The high performance of the thin film seems to result not only from the unique receptor action of CuO but also from the unique microstructure which is characterized by a large surface area available for exposure to gas due to small average particle sizes. In addition, the difference in operating temperature also seems to contribute to the high sensitivity. This method for preparing CuO-SnO₂ composite thin films is thought to be of low cost and capable of achieving reproducible and sensitive thin film gas sensors for detecting H₂S gas.

ACKNOWLEDGMENTS

This work was supported in part by MKE(IITA), Busan Metropolitan City and Dong-Eui University (08-GIBAN-13, Convergence of IT Devices Institute Busan).

REFERENCES

- [1] P. Siciliano, Sens. Actuators B 70, 153 (2000).
- [2] K. Ihokura and J. Watson, CRC Press, Boca Raton, p. 78, 1994.
- [3] N. Yamazoe, J. Tamaki, and N. Miura, Mater. Sci. Eng. B 41, 178 (1996).
- [4] T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, J. Mater. Chem. 4, 1259 (1994).
- [5] J. Tamaki, T. Maekawa, N. Miura, and N. Yamazoe, Sens. Actuators B 9, 197 (1992).
- [6] J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sens. Actuators B 49, 121 (1998).
- [7] T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, Chem. Lett. 20, 575 (1991).
- [8] J.-W. Lim, D.-W. Kang, D.-S. Lee, J.-S. Huh, and D.-D. Lee, Sens. Actuators B 77, 139 (2001).
- [9] V. Lantto and J. Mizsei, Sens. Actuators B 5, 21 (1991).
- [10] J. Tamaki, K. Shimanoe, Y. Yamađa, Y. Yamamoto, N. Miyura, and N. Yamazoe, Sens. Actuators B 49, 121 (1998).
- [11] L. Jianping, W. Yue, G. Xiaoguang, M. Qing, W. Li, and H. Jinghong, Sens. Actuators B 65, 111 (2000).
- [12] A. Galdikas, V. Jasutis, S. Kaciulis, G. Mattogno, A. Mironas, V. Olevano, D. Senuliene, and A. Setkus, Sens. Actuators B 43, 140 (1997).
- [13] M. de la L. Olvera and R. Asomoza, Sens. Actuators B 45, 49 (1997).
- [14] D.-D. Lee, Sens. Actuators B 20, 301 (1989).
- [15] R. B. Vasiliev, M. N. Rumyantseva, S. E. Podguzova, A. S. Ryzhikov, L. I. Ryabova, and A. M. Gaskov, Mater. Sci. Eng. B 57, 241 (1999).
- [16] M. N. Rumyantseva, M. Labeau, J. P. Senateur, G. Delabouglise, N. Boulova, and A. M. Gaskov, Mater. Sci. Eng. B 41, 228 (1996).
- [17] C.-H. Shim, D.-S. Lee, S.-I. Hwang, M.-B. Lee, J.-S. Huh, and D.-H. Lee, Sens. Actuators B 81, 176 (2002).
- [18] W. Qu, W. Wlodarski, and M. Austin, Microelectron. J. 31, 561 (2000).
- [19] C. H. Shim, D. S. Lee, S. I. Hwang, M. B. Lee, J. S. Huh, and D. D. Lee, Sens. Actuators B 81, 176 (2002).
- [20] O.-S. Kwon, S.-I. Hwang, C.-H. Shim, B.-C. Kim, G.-H. Rue, J.-S. Huh, and D.-D. Lee, Sens. Actuators B 89, 158 (2003).
- [21] J. Lalande, R. Ollitrault-Fichet, and P. Boch, J. Eur. Ceram. Soc. 20, 2415 (2000).
- [22] V. R. Katti, A. K. Debnath, K. P. Muthe, M. Kaur, A. K. Dua, S. C. Gadkari, S. K. Gupta, and V. C. Sahni, Sens. Actuators B 96, 245 (2003)