• 제목/요약/키워드: SnO$_2$ thin films

검색결과 303건 처리시간 0.028초

CVD 방법(方法)에 의한 SnO_2/n-Si$ 태양전지(太陽電池)의 제작(製作) ([ $SnO_2/n-Si$ ] Solar Cell Fabricated by the CVD Method)

  • 노경석;손연규;이동헌
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.19-25
    • /
    • 1988
  • [ $SnO_2$ ] thin films have been deposited on the pyrex glasses and silicon wafers by CVD method. Tin oxide films had a good transmittance above 80% in the visible region and the lowest sheet resistance at $520^{\circ}C$. When the ratio of $SbCl_3$ was 2wt%. The optimum conditions were obtained at the oxidation time of 3 minutes in the case that Voc and Jsc were 0.40V and $33.5mA/cm^2$ respectively and the corresponding conversion efficiency was 6.07%.

  • PDF

ION BEAM AND ITS APPLICATIONS

  • Koh, S.K.;Choi, S.C.;Kim, K.H.;Cho, J.S.;Choi, W.K.;Yoon, Y.S.;Jung, H.J.
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.110-114
    • /
    • 1997
  • Development of metal ion source growth of high quality Cu metal film formation of non-stoichiometric $SnO_2$ films of Si(100), and modification fo polymer surface by low enregy ion beam have been carried out at KIST Ion Beam Lab. A new metal ion source with high ion beam flux has been developed by a hybrid ion beam (HIB) deposition and non-stoichiometric $SnO_2$ films are controlled by supplying energy. The ion assisted reaction (IAR) in which keV ion beam is irradiated in reactive gas environment has been deveolped for modifying the polymers and enhancing adhesion to other materials and advantages of the IAR have been reviewed.

  • PDF

열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화 (Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect)

  • 정동건;이준엽;권진범;맹보희;김영삼;양이준;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.348-352
    • /
    • 2022
  • Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

SnO2 박막의 열처리온도에 따른 결정성과 전기적인 특성 연구 (Study on Electrical Properties and Structures of SnO2 Thin Films Depending on the Annealing Temperature)

  • 연수지;이승희;오데레사
    • 산업진흥연구
    • /
    • 제1권2호
    • /
    • pp.7-11
    • /
    • 2016
  • $SnO_2$ 박막의 결정성과 화학적인 결합구조의 변화가 전기적인 특성에 미치는 영향을 조사하였다. 증착한 $SnO_2$은 결정질 특성을 가지며 열처리온도가 증가함에 따라 비정질 특성으로 변하였으며, 산소공공의 함량변화는 열처리 온도가 증가할수록 증가하였다가 감소하였다. 산소공공이 증가하면 결정성이 증가하다가 산소공공이 감소하기 시작하면 비정질특성이 우세하게 나타났다. 이러한 결정성에서 비정질로 변화하는 특성의 차이는 PL 분석에 의한 광학적 특성에서 뚜렷하게 나타났으며, 100도와 150도 열처리를 한 박막에서 가장 큰 차이가 나는 것을 보여주었다. XRD 분석보다는 $SnO_2$ 결정구조의 변화에 대하여 광학적인 특성변화에서 더 뚜렷하게 나타난 이유는 케리어의 이온화에 의한 광학적 여기량이 150도 열처리에서 크게 증가하였기 때문이며, 더 높은 온도에서는 광학적 여기량이 감소한 이유는 산소공공에 의한 케리어가 많지 않았기 때문으로 확인할 수 있다.

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

RF 마그네트론 스퍼터링법으로 제작된 ITO 박막의 공정압력 변화에 따른 특성 (Properties of ITO thin films deposited by RF magnetron sputtering with process pressure)

  • 정성진;김덕규;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.83-86
    • /
    • 2010
  • The transparent electrode properties of ITO films deposited by RF magnetron sputtering with process pressure were investigated. The ITO thin films was deposited on a glass substrate using a target with 3in diameter sintered at a ratio of $In_2O_3$ : $SnO_2$ (9 : 1). 200-nm-thick ITO thin films were manufactured by various process pressures ($2.0{\times}10^{-2}$, $7.0{\times}10^{-3}$ and $2.0{\times}10^{-3}$ Torr). The optical transmittance and resistivity of the deposited ITO thin films showed a relatively satisfactory result under $10^{-2}$ Torr. For high process pressure, the optical transmittance was below 80%, while for low process pressure, the optical transmittance was above 85%. As a result of of mobility, resistivity and carrier concentration by Hall measurement, we obtained satisfactory properties to apply into a transparent conducting thin film.

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • 조영준;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Sputtered ITO(glass)의 열처리 효과 (Thermal treatment effects of sputtered ITO(glass))

  • 김호수;정순원;구경완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture $In_{2}O_{3}$(90mol%) and $SnO_{2}$(10mol%). We prepared ITO thin films with substrate temperature 200 to $400^{\circ}C$ and annealing temperature 200 to $500^{\circ}C$. Good polycrystalline-structured ITO films with a low electrical resistivity of $3.4{\times}10^{-4}\Omega{\cdot}cm$ have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF

Sputtered ITO(glass)의 열처리 효과 (Thermal treatment effects of sputtered ITO(glass))

  • 김호수;정순원;구경완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.554-557
    • /
    • 2001
  • Indium Tin Oxide(ITO) thin films have been fabricated by the dc magnetron sputtering technique with a target of a mixture In$_2$O$_3$(90mo1%) and SnO$_2$(10mo1%). We prepared ITO thin films with substrate temperature 200 to 400$^{\circ}C$ and annealing temperature 200 to 500$^{\circ}C$ food polycrystalline-structured ITO films with a low electrical resistivity of 3.4${\times}$10$\^$-4/ Ω$.$cm have been obtained. The visible light transmittance of all obtained films was over 80 %.

  • PDF

SnO2 Hollow Hemisphere Array for Methane Gas Sensing

  • Hieu, Nguyen Minh;Vuong, Nguyen Minh;Kim, Dojin;Choi, Byung Il;Kim, Myungbae
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.451-457
    • /
    • 2014
  • We developed a high-performance methane gas sensor based on a $SnO_2$ hollow hemisphere array structure of nano-thickness. The sensor structures were fabricated by sputter deposition of Sn metal over an array of polystyrene spheres distributed on a planar substrate, followed by an oxidation process to oxidize the Sn to $SnO_2$ while removing the polystyrene template cores. The surface morphology and structural properties were examined by scanning electron microscopy. An optimization of the structure for methane sensing was also carried out. The effects of oxidation temperature, film thickness, gold doping, and morphology were examined. An impressive response of ~220% was observed for a 200 ppm concentration of $CH_4$ gas at an operating temperature of $400^{\circ}C$ for a sample fabricated by 30 sec sputtering of Sn, and oxidation at $800^{\circ}C$ for 2 hr in air. This high response was enabled by the open structure of the hemisphere array thin films.