• 제목/요약/키워드: Sn-doped SnO2

검색결과 251건 처리시간 0.025초

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

펄스레이저 공정으로 제조한 Sb가 도핑된 SnO2 박막의 전기적 및 광학적 특성 (Electrical and Optical Properties of Sb-doped SnO2 Thin Films Fabricated by Pulsed Laser Deposition)

  • 장기선;이정우;김중원;유상임
    • 한국세라믹학회지
    • /
    • 제51권1호
    • /
    • pp.43-50
    • /
    • 2014
  • We fabricated undoped and Sb-doped $SnO_2$ thin films on glass substrates by a pulsed laser deposition (PLD) process. Undoped and 2 - 8 wt% $Sb_2O_3$-doped $SnO_2$ targets with a high density level of ~90% were prepared by the spark plasma sintering (SPS) process. Initially, the effects of the deposition temperature on undoped $SnO_2$ thin films were investigated in the region of $100-600^{\circ}C$. While the undoped $SnO_2$ film exhibited the lowest resistivity of $1.20{\times}10^{-2}{\Omega}{\cdot}cm$ at $200^{\circ}C$ due to the highest carrier concentration generated by the oxygen vacancies, 2 wt% Sb-doped $SnO_2$ film exhibited the lowest resistivity value of $5.43{\times}10^{-3}{\Omega}{\cdot}cm$, the highest average transmittance of 85.8%, and the highest figure of merit of 1202 ${\Omega}^{-1}{\cdot}cm^{-1}$ at $400^{\circ}C$ among all of the doped films. These results imply that 2 wt% $Sb_2O_3$ is an optimum doping content close to the solubility limit of $Sb^{5+}$ substitution for the $Sb^{4+}$ sites of $SnO_2$.

Electrodeposition of SnO2-doped ZnO Films onto FTO Glass

  • Yoo, Hyeonseok;Park, Jiyoung;Kim, Yong-Tae;Kim, Sunkyu;Choi, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.61-68
    • /
    • 2019
  • Well aligned $SnO_2$-doped ZnO nanorods were prepared by single step or 2-step electrochemical depositions in a mixture solution of zinc nitrate hexahydrate, ammonium hydroxide solution and 0.1 M tin chloride pentahydrate. The morphologies of electrochemically deposited $SnO_2$-doped ZnO were transformed from plain (or network) structures at low reduction potential to needles on hills at high reduction potential. Well aligned ZnO was prepared at intermediate potential ranges. Reduction reagent and a high concentration of Zn precursor were required to fabricate $SnO_2$ doped ZnO nanorods. When compared to results obtained by single step electrochemical deposition, 2-step electrochemical deposition produced a much higher density of nanorods, which was ascribed to less potential being required for nucleation of nanorods by the second-step electrochemical deposition because the surface was activated in the first-step. Mechanisms of $SnO_2$ doped ZnO nanorods prepared at single step or 2-step was described in terms of applied potential ranges and mass-/charge- limited transfer.

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

Y-Ba-Cu-O계에서 $Y_1Ba_2Cu_3O_{7-\delta}$상의 성장에 미치는 $SnO_2$의 효과 (Effect of $SnO_2$ addition on the growth of $Y_1Ba_2Cu_3O_{7-\delta}$phase in Y-Ba-Cu-O system)

  • 임대호;송명엽;원동연;홍계원
    • 한국재료학회지
    • /
    • 제4권4호
    • /
    • pp.428-438
    • /
    • 1994
  • Y-Ba-Cu-O 계에서 123상의 성장에 미치는 Sn의 효과를 관찰하기 위하여 Sn이 첨가된 123+Sn성형체와 Sn이 첨가되지 않은 123성형체와의 couple시편을 만들었다. $1100^{\circ}C$에서 24시간 유지한 후 $970^{\circ}C$에서 1시간 유지한 시편에서 123상은 Sn이 첨가된 123+Sn 성형체의 표면에서부터 생성되어 Sn이 첨가되지 않은 123성형체 내부쪽으로 성장하였다. $1100^{\circ}C$에서 48시간 유지한 후 $970^{\circ}C$에서 1시간 유지한 시편에서는 123상이 관찰되지 않았으며 Y-Ba-Sn으로 구성된 결정립이 관찰되었다.

  • PDF

Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성 (Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films)

  • 박기철;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.641-646
    • /
    • 2011
  • Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성 (Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

SnO2가 첨가된 저온소결 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Low Temperature Sintering (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics Doped with SnO2)

  • 이광민;류주현;이지영
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.690-693
    • /
    • 2015
  • In this paper, in order to develop excellent Pb-free composition ceramics for ultrasonic sensor. The $SnO_2$-doped ($Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3$)(abbreviated as NKL-NST) ceramics have been synthesized using the ordinary solid state reaction method. The effect of $SnO_2$-doping on their dielectric and piezoelectric properties was investigated. The ceramics doped with 0 wt% $SnO_2$ have the optimum values of piezoelectric constant($d_{33}$), piezoelectric figure of merit($d_{33}.g_{33}$), planar piezoelectric coupling coefficient($k_p$) and density : $d_{33}=195[pC/N]$, $d_{33}.g_{33}=5.62pm^2/N.kp=0.40$, $density=4.436[g/cm^3]$. suitable for duplex ultrasonic sensor application.

Preparation of Gas Sensors with Nanostructured SnO2 Thick Films with Different Pd Doping Concetrations by an Ink Dropping Method

  • Yoon, Hee Soo;Kim, Jun Hyung;Kim, Hyun Jong;Lee, Ho Nyun;Lee, Hee Chul
    • 한국세라믹학회지
    • /
    • 제54권3호
    • /
    • pp.243-248
    • /
    • 2017
  • Pd-doped $SnO_2$ thick film with a pure tetragonal phase was prepared on patterned Pt electrodes by an ink dropping method. Nanostructured $SnO_2$ powder with a diameter of 10 nm was obtained by a modified hydrazine method. Then the ink solution was fabricated by mixing water, glycerol, bicine and the Pd-doped $SnO_2$ powder. When the Pd doping concentration was increased, the grain size of the Pd-doped $SnO_2$ thick film became smaller. However, an agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The orthorhombic phase disappeared even at a low Pd doping concentration and a PdO peak was obtained for a high Pd doping concentration. The crack-free Pd-doped $SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of the patterned Pt electrodes by the optimized ink dropping method. The prepared 3 wt% Pd-doped $SnO_2$ thick films showed monoxide gas responses ($R_{air}/R_{CO}$) of 4.0 and 35.6 for 100 and 5000 ppm, respectively.

화학증착법에 의해 제조된 Sb-doped $SnO_2$ 박막의 전기적 및 광학적 특성 (Electrical and Optical Properties of Sb-doped SnO2 Films Prepared by Chemical Vapor Deposition)

  • 이수원;김광호
    • 한국세라믹학회지
    • /
    • 제29권4호
    • /
    • pp.319-327
    • /
    • 1992
  • Sb-doped SnO2 films were formed on Corning glass 7059 substrate by chemical vapor deposition using simulataneous hydrolysis of SnCl4 and SbCl5. Fairly good transparent conducting film with a low resistivity of ~6$\times$10-4{{{{ OMEGA }}cm and high average optical transparency above ~85% in the range of visible light was obtained at the deposition condition of 50$0^{\circ}C$ and input-gas ratio, [Psbcl5/Psncl4] of 0.05. Film conductivity was improved without loosing optical transparency at light doping of Sb and found to be due to the increase of electron concentration. However, high doping of Sb into SnO2 film largely deteriorated conductivity, optical transparency and crystallinity of the film.

  • PDF