DOI QR코드

DOI QR Code

Structural and Electrical Properties of Ga-doped ZnO-SnO2 Films

Ga이 첨가된 ZnO-SnO2막의 구조적 및 전기적 특성

  • Park, Ki-Cheol (Department of Semiconductor Engineering and ERI, Gyeongsang National University) ;
  • Ma, Tae-Young (Department of Electrical Engineering and ERI, Gyeongsang National University)
  • 박기철 (경상대학교 반도체공학과 및 공학연구원) ;
  • 마대영 (경상대학교 전기공학과 및 공학연구원)
  • Received : 2011.03.29
  • Accepted : 2011.07.04
  • Published : 2011.08.01

Abstract

Ga-doped ZnO-$SnO_2$ (ZSGO) films were deposited by rf magnetron sputtering and their structural and electrical properties were investigated. In order to fabricate the target for sputtering, the mixture of ZnO, $SnO_2$ (1:1 weight ratio) and $Ga_2O_3$ (3.0 wt%) powder was calcined at $800^{\circ}C$ for 1 h. The substrate temperature was varied from room temperature to $300^{\circ}C$. The crystallographic properties and the surface morphologies of the films were studied by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The optical transmittances of the films were measured and the optical energy band gaps were obtained from the absorption coefficients. The resistivity variation with substrate temperature was measured. Auger electron spectroscopy was employed to find the atomic ratio of Zn, Sn, Ga and O in the film deposited at room temperature. ZSGO films exhibited the optical transmittance in the visible region of more than 80% and resistivity higher than $10\;{\Omega}cm$.

Keywords

References

  1. D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, Thin Solid Films, 516, 5894 (2008). https://doi.org/10.1016/j.tsf.2007.10.081
  2. Y. Cho, J. Shin, S. M. Bobade, Y. Kim, and D. Choi, Thin Solid Films, 517, 4115 (2009). https://doi.org/10.1016/j.tsf.2009.02.020
  3. Y. Tsai, N. Wang, and C. Tsai, Thin Solid Films, 518, 4955 (2010). https://doi.org/10.1016/j.tsf.2010.03.086
  4. X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, and H. Ma, Appl. Surf. Sci., 245, 310 (2005). https://doi.org/10.1016/j.apsusc.2004.10.022
  5. X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, Appl. Surf. Sci., 253, 6905 (2007). https://doi.org/10.1016/j.apsusc.2007.02.013
  6. Z. Zhaochun, H. Baibiao, Y. Yongqin, and C. Deliang, Mater. Sci. Eng., B86, 109 (2001).
  7. R. L. Hoffman, Solid-State Electron., 50, 784 (2006). https://doi.org/10.1016/j.sse.2006.03.004
  8. P. Gorrn, F. Ghaffari, T. Riedl, and W. Kowalsky, Solid-State Electron., 53, 329 (2009). https://doi.org/10.1016/j.sse.2009.01.006
  9. T. Minami, H. Sonohara, S. Takata, and H. Sato, Jpn. J. Appl. Phys., 33, L1693 (1994). https://doi.org/10.1143/JJAP.33.L1693
  10. S. Dutta and A. Dodabalapur, Sensor. Actuat., B143, 50 (2009).
  11. M. Batzill and U. Diebold, Surf. Sci., 79, 147 (2005).
  12. R. A. Asmar, J. P. Atanas, M. Ajaka, Y. Zaatar, G. Ferblantier, J. L. Sauvajol, J. Jabbour, S. Juillaget, and A. Foucaran, J. Cryst. Growth, 279, 394 (2005). https://doi.org/10.1016/j.jcrysgro.2005.02.035
  13. E. Ziegler, A. Heinrich, H. Oppermann, and G. Stover, Phys. Status Solidi., A66, 635 (1981).
  14. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, Superlattice. Microst., 49, 644 (2011).