• Title/Summary/Keyword: Sn-Ag-Cu

Search Result 421, Processing Time 0.023 seconds

Studies on the Ore Mineralogy and Litho-geochemistry of the Sheba Deposit, Barberton Greenstone Belt, South Africa

  • Altigani, Mohammed Alnagashi Hassan
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.213-232
    • /
    • 2021
  • Ore criteria at the Sheba Deposit indicate orogenic mineralization type. Rocks and mineral assemblages suggest low formation-temperature of green-schist facies. Pyrite found in two generations; Type1 is irregular grains, contains higher arsenic and gold contents, compared to the relatively younger phase Type2 pyrite, which is composed of euhedral grains, found adjacent to late quartz-carbonate veins or at rims of type1 pyrite. Two gold generations were identified; type1 found included in sulphides (mainly pyrite). The second gold type was remobilized (secondary) into free-lodes within silicates (mainly quartz). Gold fineness is high, as gold contains up to 95 wt. % Au, Ag up to 3.5 wt. %, and traces of Cu, Ni, and Fe. Pyrite type2 contains tiny mineral domains (rich in Al, Mn, Hg, Se, Ti, V, and Cr). Zoning, and replacement textures are common, suggesting multiple mineralization stages. The distribution and relationships of trace elements in pyrite type2 indicate three formation patterns: (1) Al, Mn, Hg, Se, Ti, V, Cr, and Sn are homogeneously distributed in pyrite, reflecting a synchronous formation. (2) As, Ni, Co, Zn, and Sb display heterogeneous distribution pattern in pyrite, which may indicate post-formation existence due to other activities. (3) Au and Ag show both distribution patterns within pyrite, suggesting that gold is found both in microscopic phases and as chemically bounded phase.

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

Effect of Multiple Reflows on the Mechanical Reliability of Solder Joint in LED Package (LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 리플로우 횟수의 영향)

  • Lee, Young-Chul;Kim, Kwang-Seok;Ahn, Ji-Hyuk;Yoon, Jeong-Won;Ko, Min-Kwan;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1035-1040
    • /
    • 2010
  • The research efforts on GaN-based light-emitting diodes (LEDs) keep increasing due to their significant impact on the illumination industry. Surface mount technology (SMT) is widely used to mount the LED packages for practical application. In surface mount soldering both the device body and leads are intentionally heated by a reflow process. We studied on the effects of multiple reflows on microstructural variation and joint strength of the solder joints between the LED package and the substrate. In this study, Pb-free Sn-3.0Ag-0.5Cu solder and a finished pad with organic solderability preservatives (OSP) were employed. A $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed during the multiple reflows, and the thickness of the IMC layerincreased with an increasing number of reflows. The shear force decreased after three reflows. From the observation of the fracture surface after a shear test, partially brittle fractures were observed after five reflows.

Effect of Heat Treatment on Mechanical Reliability of Solder Joints in LED Package (LED 패키지 솔더 접합부의 기계적 신뢰성에 미치는 열처리의 영향)

  • Ko, Min-Kwan;Ahn, Jee-Hyuk;Lee, Young-Chul;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • We studied the effect of heat treatment on the microstructures and mechanical strength of the solder joints in the Light Emitting Diode (LED) packages. The commercial LED packages were mounted on the a flame resistance-4 (FR4) Printed Circuit Board (PCB) in the reflow process, and then the joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 hours, respectively. After the heat treatment, we measured the shear strength of the solder joints between the PCB and the LED packages to evaluate their mechanical property. We used Pb-free Sn-3.0Ag-0.5Cu solder to bond between the LED packages and the PCBs using two different surface finishes, Electroless Nickel-Immersion Gold (ENIG) and Electroless Nickel-Electroless Palladium-Immersion Gold (ENEPIG). The microstructure of the solder joints was observed by a scanning electron microscope (SEM). (Cu,Ni)6Sn5 intermetallic compounds (IMCs) formed between the solder and the PCB, and the thickness of the IMCs was increased with increasing aging time. The shear strength for the ENIG finished LED package increased until aging for 300 h and then decreased with increasing aging time. On the other hand, in the case of an ENEPIG finished LED package, the shear strength decreased after aging for 500 h.

Metallurgical Observation of the Buddhist Bell of Youngmoon Mountain Sangwonsa Temple (용문산 상원사 범종의 금속학적 고찰)

  • Doh, Jungmann;Park, Bangju;Lee, Jungil;Hong, Kyungtae
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.829-838
    • /
    • 2012
  • The microstructure, chemical composition, and lead isotope ratio of the Buddhist bell of Yongmoon Mountain Sangwonsa temple, which was selected as one of the three great bells of Korea by Japanese historians, were analyzed in order to estimate the origin of the material and the time of casting. The microstructure of the temple bell was composed of a copper matrix phase with ${\alpha}$, a face centered cubit lattice structure, a ${\delta}$ phase with $Cu_{41}$ $(Sn,Ag,Sb)_{11}$ as the chemical structural formula, dispersed lead and $Cu_2S$ particles, and locally agglomerated fine particles. Through analysis of the chemical composition of the bell, a criterion (Pb: 0-3.0 wt%, Sn: 10-15 wt%) for distinguishing the bells of the Shilla dynasty from the bells of the Koryo Chosun dynasty is proposed. Examining the lead isotope ratio of $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$ of the Buddhist bell of Sangwonsa temple proved that the bell was fabricated using raw materials in South Korea, which led to the conclusion that the bell was cast in Korea and the top board of the bell has been damaged by an unknown individual. The criteria of distinguishing the bells from the Shilla dynasty from the bells of the Koryo Chosun dynasty presented for the first time in this research is expected to aid in identifying and estimating the previously unclear production years of other bells.

Analysis of Void Effects on Mechanical Property of BGA Solder Joint (솔더 접합부에 생성된 Void의 JEDEC 규격과 기계적 특성에 미치는 영향)

  • Lee, Jong-Gun;Kim, Kwang-Seok;Yoon, Jeong-Won;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Understanding the void characterization in the solder joints has become more important because of the application of lead free solder materials and its reliability in electronic packaging technology. According to the JEDEC 217 standard, it describes void types formed in the solder joints, and divides into some categories depending on the void position and formation cause. Based on the previous papers and the standards related to the void, reliability of the BGA solder joints is determined by the size of void, as well as the location of void inside the BGA solder ball. Prior to reflow soldering process, OSP(organic surface preservative) finished Cu electrode was exposed under $85^{\circ}C$/60%RH(relative humidity) for 168 h. Voids induced by the exposure of $85^{\circ}C$/60%RH became larger and bigger with increasing aging times. The void position has more influence on mechanical strength property than the amount of void growth does.

An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages (플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석)

  • Shin, Ki-Hoon;Kim, Hyoung-Tae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.

Optimization of Material and Process for Fine Pitch LVSoP Technology

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.625-631
    • /
    • 2013
  • For the formation of solder bumps with a fine pitch of 130 ${\mu}m$ on a printed circuit board substrate, low-volume solder on pad (LVSoP) technology using a maskless method is developed for SAC305 solder with a high melting temperature of $220^{\circ}C$. The solder bump maker (SBM) paste and its process are quantitatively optimized to obtain a uniform solder bump height, which is almost equal to the height of the solder resist. For an understanding of chemorheological phenomena of SBM paste, differential scanning calorimetry, viscosity measurement, and physical flowing of SBM paste are precisely characterized and observed during LVSoP processing. The average height of the solder bumps and their maximum and minimum values are 14.7 ${\mu}m$, 18.3 ${\mu}m$, and 12.0 ${\mu}m$, respectively. It is expected that maskless LVSoP technology can be effectively used for a fine-pitch interconnection of a Cu pillar in the semiconductor packaging field.

Study on the tasty constituents and minerals in Clavariaceae botrytis (싸리버섯의 정미성분(呈味成分)과 Mineral에 관(關)한 연구(硏究))

  • Seoh, Jeong-Hi;Cho, Soo-Yeul;Lee, Sung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 1974
  • Tasty constituents such as free amino acids. free organic acids and free sugars and minerals in clavariaceae botrytis were surveyed through the course of this study. The results were as, follows: 1. Isoleucine valine threonine alanine methionine cysteine glutamine histidine glutamic acid and aspartic acid were presented in clavariaceae botrytis, and aspartic acid showed the highest amount. 2. Succinic acid was the major organic acid in clavariaceae botrytis, and also citric acid malic acid and fumaric acid were presented. 3. Clavariaceae botrytis contained fructose, maltose glucose and sucrose ; glucose and sucrose were more than 80% of total sugars. 4. Na K Mg Ca Zn Mn Cu am Fe by atomic absorption spectrometer were detected and assayed. and Al Si Ni Sn Ti Cr Ag Pb B and Sr detected by emission spectrograph. K of these minerals showed the highest amount but very small amount of Ca was presented.

  • PDF

Highly Selective Transport of Ag+Ion through a Liquid Membrane Containing 2-Mercaptobenzothiazole as a Carrier

  • Akhond, Morteza;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.489-493
    • /
    • 2003
  • 2-Mercaptobenzothiazole was used as a highly selective and efficient carrier for the uphill transport of silver ion through a chloroform bulk liquid membrane. In the presence of thiosulfate ion as a suitable metal ion acceptor in the receiving phase, the amount of silver transported across the liquid membrane after 180 min was 90 ± 3.0%. The selectivity and efficiency of silver ion transported from aqueous solutions containing equimolar mixtures of $Zn^{2+}, Cu^{2+}, Co^{2+}, Ni^{2+}, Cd^{2+}, Pb^{2+}, Bi^{3+}, Fe^{2+}, Fe^{3+}, Pd^{2+}, Mn^{2+}, Hg^{2+}, Sn^{2+}, Ca^{2+}, Mg^{2+}, K^+, Na^+ and Li^+$ were investigated.