• Title/Summary/Keyword: Smooth hypersurface

Search Result 18, Processing Time 0.195 seconds

A NATURAL TOPOLOGICAL MANIFOLD STRUCTURE OF PHASE TROPICAL HYPERSURFACES

  • Kim, Young Rock;Nisse, Mounir
    • 대한수학회지
    • /
    • 제58권2호
    • /
    • pp.451-471
    • /
    • 2021
  • First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (ℂ∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin's decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.

LINEAR AUTOMORPHISMS OF SMOOTH HYPERSURFACES GIVING GALOIS POINTS

  • Hayashi, Taro
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.617-635
    • /
    • 2021
  • Let X be a smooth hypersurface X of degree d ≥ 4 in a projective space ℙn+1. We consider a projection of X from p ∈ ℙn+1 to a plane H ≅ ℙn. This projection induces an extension of function fields ℂ(X)/ℂ(ℙn). The point p is called a Galois point if the extension is Galois. In this paper, we will give necessary and sufficient conditions for X to have Galois points by using linear automorphisms.

REAL HYPERSURFACES WITH MIAO-TAM CRITICAL METRICS OF COMPLEX SPACE FORMS

  • Chen, Xiaomin
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.735-747
    • /
    • 2018
  • Let M be a real hypersurface of a complex space form with constant curvature c. In this paper, we study the hypersurface M admitting Miao-Tam critical metric, i.e., the induced metric g on M satisfies the equation: $-({\Delta}_g{\lambda})g+{\nabla}^2_g{\lambda}-{\lambda}Ric=g$, where ${\lambda}$ is a smooth function on M. At first, for the case where M is Hopf, c = 0 and $c{\neq}0$ are considered respectively. For the non-Hopf case, we prove that the ruled real hypersurfaces of non-flat complex space forms do not admit Miao-Tam critical metrics. Finally, it is proved that a compact hypersurface of a complex Euclidean space admitting Miao-Tam critical metric with ${\lambda}$ > 0 or ${\lambda}$ < 0 is a sphere and a compact hypersurface of a non-flat complex space form does not exist such a critical metric.

ON THE EXISTENCE OF STABLE MINIMAL HYPERSURFACES OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.409-415
    • /
    • 2006
  • On a compact oriented smooth 3-dimensional manifold (M, g), we consider the critical point equation(CPE) defined as $z_g=s^{{\prime}*}_g(f)$. Under CPE, it is shown in [5] that every stable minimal hypersurface in M is contained in ${\varphi}^{-1}(0)$ for ${\varphi}{\in}$ ker $s^{{\prime}*}_g$. We study analytic and geometric conditions under which the stable minimal hypersurface in M does not exist.

  • PDF

REAL HYPERSURFACES WITH ξ-PARALLEL RICCI TENSOR IN A COMPLEX SPACE FORM

  • Ahn, Seong-Soo;Han, Seung-Gook;Kim, Nam-Gil;Lee, Seong-Baek
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.825-838
    • /
    • 1998
  • We prove that if a real hypersurface with constant mean curvature of a complex space form satisfying ▽$_{ξ/}$S = 0 and Sξ = $\sigma$ξ for a smooth function $\sigma$, then the structure vector field ξ is principal, where S denotes the Ricci tensor of the hypersurface.

  • PDF

FOCAL POINT IN THE C0-LORENTZIAN METRIC

  • Choi, Jae-Dong
    • 대한수학회지
    • /
    • 제40권6호
    • /
    • pp.951-962
    • /
    • 2003
  • In this paper we address focal points and treat manifolds (M, g) whose Lorentzian metric tensors g have a spacelike $C^{0}$-hypersurface $\Sigma$ [10]. We apply Jacobi fields for such manifolds, and check the local length maximizing properties of $C^1$-geodesics. The condition of maximality of timelike curves(geodesics) passing $C^{0}$-hypersurface is studied.ied.

ON BOUNDARY REGULARITY OF HOLOMORPHIC CORRESPONDENCES

  • Ourimi, Nabil
    • 대한수학회지
    • /
    • 제49권1호
    • /
    • pp.17-30
    • /
    • 2012
  • Let D be an arbitrary domain in $\mathbb{C}^n$, n > 1, and $M{\subset}{\partial}D$ be an open piece of the boundary. Suppose that M is connected and ${\partial}D$ is smooth real-analytic of finite type (in the sense of D'Angelo) in a neighborhood of $\bar{M}$. Let f : $D{\rightarrow}\mathbb{C}^n$ be a holomorphic correspondence such that the cluster set $cl_f$(M) is contained in a smooth closed real-algebraic hypersurface M' in $\mathbb{C}^n$ of finite type. It is shown that if f extends continuously to some open peace of M, then f extends as a holomorphic correspondence across M. As an application, we prove that any proper holomorphic correspondence from a bounded domain D in $\mathbb{C}^n$ with smooth real-analytic boundary onto a bounded domain D' in $\mathbb{C}^n$ with smooth real-algebraic boundary extends as a holomorphic correspondence to a neighborhood of $\bar{D}$.

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.