• Title/Summary/Keyword: Smoke plume

Search Result 46, Processing Time 0.024 seconds

The Study on Minimum Smoke Propellant to Reduce Afterburning Reaction (후연소 반응이 감소된 무연계 고체 추진제에 관한 연구)

  • Yim, Yoojin;Lee, Jongseop;Park, Euiyong;Choi, Sunghan;Yoo, Jichang;Cho, Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-17
    • /
    • 2013
  • This paper describes a study on after-burning suppressant in a solid propellant to reduce the plume formed outside of rocket nozzles, which could expose the launch site and the flight track. The minimum smoke propellant to enhance the stealth ability was formulated in terms of the kinds and the effects of after-burning suppressant on the ballistic performance and the amount of primary smoke. A after-burning suppressant, $K_2SO_4$ of about 1.1% weight content was found to show profound reduction of the rocket plume, giving negligibly slight increase in pressure exponent of burning rate. Also minimum smoke propellant with less than 1.1% of $K_2SO_4$ corresponds to A-class satisfaction in primary smoke by AGARD standard.

Study of Smoke Behavior and Differential Pressure in the Refuge Safety Area According to Damper Capacity of Smoke Control (제연댐퍼 송풍량에 따른 피난 안전 구역 차압 및 연기 거동 특성 연구)

  • Lee, Jae-Bin;Moon, Joo-Hyun;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2011
  • In this study, we calculated the smoke movement at the fire area of the refuge floor which has the refuge safety area in case of fire in the high rise building by using a computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). The buoyancy plume was applied using the temperature and flow velocity which represent 10 MW heat release rate in order to describe the fire, and the smoke movement was predicted using a species conservation equation. The pressurization system of smoke control was adopted with smoke control damper in refuge safety area, at the result, it is confirmed that the damper capacity was enough to smoke control in which the flow rate of supply was applied 25 $m^3/s$ in the case of the door at fire area opened only, and 50 $m^3/s$ in the doors at the fire area and lobby both opened case. They were satisfied in NFSC 501-A. Even though the door of fire area closed, there were smoke leakages at the gap between the door and wall. In addition, the refugee could be isolated in the fire area when the door of fire area closed during smoke control in the case of using the high damper flow rate of supply, 50 $m^3/s$. Therefore the proper damper flow rate of supply are needed in order to prevent the damage of refugee and this study proposes the suitable condition of damper capacity according to refuge scenario.

The Study of Solid Propellant to Reduce Infrared Signature (적외선(IR, Infrared) 신호가 감소된 고체추진제 개발)

  • Lee, Jongseop;Yim, Yoojin;Park, Euiyong;Han, Houkseop
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.42-48
    • /
    • 2013
  • In this paper, a study of solid rocket propellant formulation is performed to suppress plume and reduce IR(infrared) signature which occurs in propellant combustion. The solid propellant to enhance the stealthy ability was formulated in terms of the kinds and the effects of afterburning suppressant on the ballistic performance and the amount of primary smoke. In addition, substantial decrease in plume and IR signature is confirmed by static firing test by a 4 inch standard motor.

Russian Forest Fire Smoke Aerosol Monitoring Using Satellite and AERONET Data (인공위성 자료와 AERONET 관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링)

  • 이권호;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • Extensive forest fire activities occurred across the border in Russia, particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere, resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was transported to Korea through Mongolia and eastern China. On 20 May 2003, a number of large fires were burning in eastern Russian, producing a thick, widespread pall of smoke over much of Northeast Asia. In this study, separation technique was used for aerosol retrieval application with imagery from MODIS aboard TERRA satellites. MODIS true-color image shows the location of fires and the grayish color of the smoke plumes over Northeast Asia. Aerosol optical thckness (AOT) retrieved from the MODIS data were compared with fire hot spots, ground-based radiation data and TOMS -based aerosol index data. Large AOT, 2.0-5.0 was observed on 20 May 2003 over Korea due to the influence of the long range transport of smoke aerosol plume from the Russian fires, while surface observed fine mode of aerosol size distribution increased.

Design and Implementation of Turbidity Measurement Module of Plume using a Digital Camera (디지털카메라를 이용한 굴뚝연기의 혼탁도 측정모듈의 설계 및 구현)

  • Ban, ChaeHoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.372-378
    • /
    • 2015
  • Smoke generated from business establishments and factories will not only cause air pollution but also have a significant impact on the human body. Generally, the most common method for measuring the turbidity of the plume generated from the stack is a method of observing by the transmissometer mounted in the chimney or Method 9 from the US EPA(Environmental Protection Agency) which is a visual method of determining plume turbid emitted from stationary sources. However, these methods need a lot of cost to build and maintain. In this paper, we build a plume turbidity measurement module programs using a digital camera. We design and implement a module which acquires the pictures of the plume using a digital camera and measures the turbidity of it using the DOM(Digital Optical Method). In addition, we demonstrate the excellence by comparing and analyzing implemented module and other methods.

Design and Implementation of Turbidity Measurement Module of Plume using Optical Sensing (광학센싱을 이용한 굴뚝연기의 혼탁도 측정모듈의 설계 및 구현)

  • Ban, ChaeHoon;Son, HyunGeun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.312-315
    • /
    • 2014
  • Smoke generated from business establishments and factories will not only cause air pollution but also have a significant impact on the human body. Generally, the most common method for measuring the turbidity of the plume generated from the stack is a method of observing by the transmissometer mounted in the chimney or Method 9 from the US EPA(Environmental Protection Agency) which is a visual method of determining plume turbid emitted from stationary sources. However, these methods need a lot of cost to build and maintain. In this paper, we build a plume turbidity measurement module programs using light sensing. We design and implement a module which acquires the pictures of the plume using a digital camera and measures the turbidity of it using the DOM(Digital Optical Method). In addition, we demonstrate the excellence by comparing and analyzing implemented module and other methods.

  • PDF

Numerical and Experimental Study on Infrared Signature of Solid Rocket Motor (고체로켓모터의 적외선 신호에 관한 수치적·실험적 연구)

  • Kim, Sangmin;Kim, Mintaek;Song, Soonho;Baek, Gookhyun;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.62-69
    • /
    • 2014
  • Infrared signature of rocket plume plays an important role for detection, recognition, tracking and minimzing for low observability. Infrared signatures of rocket plume with reduced smoke propellant and smokeless propellant are measured. In order to estimate the infrared signature of rocket plume, CFD analysis for flow structure of plume is performed, and layered integration method for estimating of infrared signature is used. Numerical and experimental results were in good agreement. Both propellants had similar infrared signature. Strong peak at $4.3{\mu}m$ region in the experimental results is appeared due to experimental error arising from the calibration procedure.

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

Prediction of sprinkler activation time in compartment fire (구획화재에서의 스프링클러 작동시간 예측 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.13-18
    • /
    • 1996
  • A general description of sprinkler activation time in compartment-fire-generated smoke layers is made. For calculation of the time hot layer temperature is obtained from two-layer zonal model and time constant of sprinkler is measured. Upper-layer thickness at the instant of sprinkler activation is also presented with changes of opening area. The output of the present study provide inputs for the interaction modeling of sprinkler spray and compartment fire environment, which simulates fire suppression phenomena. Futhermore, experiments are performed in mock-up with gasoline pool fire in order to evaluate the reliability of the model.

  • PDF

Numerical Prediction of Smoke Concentration in a Compartment Fire by Using the Modified Volumetric Heat Source Model (수정된 체적열원모델을 이용한 실내 화재의 연기농도 예측)

  • Kim Sung-Chan;Lee Seong-Hyuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-350
    • /
    • 2006
  • The present study investigates the characteristics of fire-driven heat flows and gas concentration in a compartment fire by using the modified VHS model (MVHS). The main idea of this model is to add some source terms for combustion products and oxygen consumption to the original VHS model for providing more accurate and useful information on gas concentration distributions as well as thermal fields. It is found that the present MVHS model shows fairly good agreement with the experimental data and the eddy breakup combustion model. The tilting angle of fire plume calculated by MVHS is larger than that of EBU model because the fire source of VHS is affected by ventilating flow less than EBU. However, this discrepancy is apparently reduced in the downstream region of fire source.