DOI QR코드

DOI QR Code

The Study on Minimum Smoke Propellant to Reduce Afterburning Reaction

후연소 반응이 감소된 무연계 고체 추진제에 관한 연구

  • Yim, Yoojin (Development Team, Hanwha Corporation Daejeon Plant) ;
  • Lee, Jongseop (Development Team, Hanwha Corporation Daejeon Plant) ;
  • Park, Euiyong (Development Team, Hanwha Corporation Daejeon Plant) ;
  • Choi, Sunghan (Development Team, Hanwha Corporation Daejeon Plant) ;
  • Yoo, Jichang (Advanced Propulsion Center, Agency for Defense Development) ;
  • Cho, Young (Advanced Propulsion Center, Agency for Defense Development)
  • Received : 2013.06.06
  • Accepted : 2013.09.19
  • Published : 2013.10.01

Abstract

This paper describes a study on after-burning suppressant in a solid propellant to reduce the plume formed outside of rocket nozzles, which could expose the launch site and the flight track. The minimum smoke propellant to enhance the stealth ability was formulated in terms of the kinds and the effects of after-burning suppressant on the ballistic performance and the amount of primary smoke. A after-burning suppressant, $K_2SO_4$ of about 1.1% weight content was found to show profound reduction of the rocket plume, giving negligibly slight increase in pressure exponent of burning rate. Also minimum smoke propellant with less than 1.1% of $K_2SO_4$ corresponds to A-class satisfaction in primary smoke by AGARD standard.

로켓의 노즐 외부에서 형성되는 플룸으로 인하여 발사 위치나 비행궤적이 노출 될 수 있는데, 본 논문에서는 플룸을 감소시킬 수 있는 고체 추진제의 후연소 반응 억제제에 대하여 연구 결과를 제시하였다. 후연소 방지제가 무연계 고체추진제의 내탄도 성능과 일차 연기에 미치는 영향을 분석하였으며, 후연소 반응 방지제로 $K_2SO_4$를 1.1% 적용하여 후연소 반응이 크게 감소하는 것을 알 수 있었다. 또한 $K_2SO_4$의 함량이 증가하면 압력지수가 미세하게 증가하며, 1차 연기의 발생량도 증가하므로 1.1% 이하를 사용해야 AGARD 기준으로 1차 연기 A등급에 부합되는 것으로 분석되었다.

Keywords

References

  1. Prigent, G., "Plume, Signal Interference and Plume Signature," Chapter 5 in Solid Rocket Propulsion Technology, edited by Alain Davenas, Pergamon Press, pp. 193-213, 1993.
  2. Kubota, N., Propellants and Explosives, 2nded., Wiley-VCH, pp. 177-359, 2006.
  3. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 8thed., John Wiley & Sons, Inc, pp. 512-514, 2010.
  4. AGARD in NATO, Propulsion and Energetics Panel Working Group 21 on Terminology and Assessment Methods of Solid Propellant Rocket Exhaust Signatures, AGARD-AR-287, 1993.
  5. STANAG 6016 (Edition 1), NATO, Solid Propellant Smoke Classification, 1996.
  6. Jensen, D.E. and Webb, B.C., Afterburning Predictions for Metal-Modified Propellant Motor Exhausts, 11th AIAA/SAE Propulsion Conference, Anaheim, CA, USA, AIAA Paper No. 75-1232, 1975.
  7. Miller, E., "Smokeless Propellants," Chapter 15 in Fundamentals of Solid Propellant Combustion, edited by K.K. Kuo and M. Summerfield, Vol. 90 Progress in AIAA, 1984.
  8. Miller, E. and Mitson, S., The Suppression of Afterburning in Solid Rocket Plumes by Potassium Salts, AFOSR-83-0358, 1984.
  9. Hudson, M. K., Shanks, R.B., Snider, D.H., Lindquist, D.M., Luchini, C., and Rooke, S., UV, Visible, and Infrared Spectral Emissions in Hybrid Rocket Plumes, University of Arkansas at Little Rock, International Journal of Turbo and Jet Engines, Vol. 15, pp. 71-87, 1998.
  10. US Pat. 6,230,626, Flashless MK 66 Rocket Motor, 2001.
  11. Diaz, E., Gun propellant residues dispersed from static artillery firings of LG1 Mark II and C3 105-mm howitzers, Technical Report, DRDC Valcartier, TR 2007-282, 2007.
  12. Ludwig, C.B., Malkmus, W. and Walker, J., The Standard Infrared Radiation Model, 16th AIAA Thermophysics Conference, Palo Alto, CA, USA, AIAA 81-1051, 1981.
  13. Calhoon, Jr. W.H. and Kenzakowski, D.C., Flowfield and Radiation Analysis of Missile Exhaust Plumes Using a Turbulent-Chemistry Interaction Model, 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference, Huntsville, Alabama, USA, AIAA 2000-3388, 2000.
  14. Oian, L., Zaidi, S.H., and Miles, R.B., Narrow Linewidth Potassium Imaging Filter for Near Infrared Detection of Missile Plumes, 43rd AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, USA, AIAA 2005-825, 2005.
  15. US Pat. 6,958,813, Plume Detector, 2005.
  16. McBride, B.J. and Gordon S., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II. User Manual and Program Description, NASA RP-1311-II, 1996.
  17. Gordon S. and McBride, B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis, NASA RP-1311, 1994.

Cited by

  1. Infrared Irradiance Reduction in Minimum Smoke Propellants by Addition of Potassium Salt vol.40, pp.1, 2015, https://doi.org/10.1002/prep.201400172