• Title/Summary/Keyword: Smoke Evacuation

Search Result 213, Processing Time 0.03 seconds

A study on measures for the mitigation of fire damage in Korea super high-rise building through the improvement of domestic·foreign standards (국·내외 기준개선을 통한 국내 초고층 건축물의 화재피해경감 대책에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.233-248
    • /
    • 2017
  • Uniform laws and regulations and reasonable design is necessary for the prevention of possible fire in super high-rise building. To this end, this study focused on super high-rise and massive building-related architectural review performance-based design (PBD) evaluation disaster impact assessment (DIA), and provided fire engineering measures for improving fire prevention on the basis of performance-based design by analyzing the buildings subject to these systems and problems in terms of contents. Above all, in the aspect of law and standard improvement, first, with regard to dual parts of two statutes though significant portion of them has the same contents in performance-based design (PBD) evaluation and disaster impact assessment (DIA), it is necessary to operate the systems after making them conform with each other and consolidating or abolishing them. Second, if it is impossible to consolidate or abolish performance-based design (PBD) evaluation and disaster impact assessment (DIA), the areas of contents of performance-based design (PBD) evaluation and disaster impact assessment (DIA) should be precisely classified and established. Next, engineering improvement measures against fire hazard in super high-rise building are as follows. First, it is necessary to revise the provisions of straight-run stairs in special escape stairs. And in case of installing a mechanical smoke exhaust system instead of smoke vent, sandwich pressurization used in the United Stated should be permitted. Second, with regard to smoke control system for special escape stairs, it was shown that there was necessity for revising the standards in order to enable air to be supplied according to section in case of fire, carrying out performance-based design, and the like from the early design stages to the completion stages. In the future, it is expected that an epoch-making contribution will be made to a decrease in casualties and property damage due to fire in case of super high-rise building where the results can be reflected after carrying out a study on maintenance and carrying out an additional study on other considerations of super high-rise building together with reflecting the improvement measures provided in the above-mentioned study.

A Study on an Adaptive Guidance Plan by Quickest Path Algorithm for Building Evacuations due to Fire (건물 화재시 Quickest Path를 이용한 Adaptive 피난경로 유도방안)

  • Sin, Seong-Il;Seo, Yong-Hui;Lee, Chang-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.197-208
    • /
    • 2007
  • Enormously sized buildings are appearing world-wide with the advancement of construction techniques. Large-scaled and complicated structures will have increased difficulties for dealing with safety, and will demand well-matched safety measures. This research introduced up-to-date techniques and systems which are applied in buildings in foreign nations. Furthermore, it proposed s direct guidance plan for buildings in case of fire. Since it is possible to install wireless sensor networks which detect fires or effects of fire, the plan makes use of this information. Accordingly, the authors completed a direct guidance plan that was based on omnidirectional guidance lights. It is possible to select a route with concern about both time and capacity with a concept of a non-dominated path. Finally, case studies showed that quickest path algorithms were effective for guiding efficient dispersion routes and in case of restriction of certain links in preferred paths due to temperature and smoke, it was possible to avoid relevant links and to restrict demand in the network application. Consequently, the algorithms were able to maximize safety and minimize evacuation time, which were the purposes of this study.

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.

A study on the effect of gusty wind on smoke control performance in road tunnel (돌풍이 도로터널의 제연성능에 미치는 영향 연구)

  • Baek, Doo-San;Cho, Hyeon-Seok;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.95-108
    • /
    • 2022
  • The increase in the use time of tunnel users due to the lengthening of the road tunnel may increase the evacuation time in case of fire, resulting in a large number of casualties. In order to reduce the casualties caused by fire, the "Road Tunnel Design Manual, Part 6 Tunnel" and "Road Tunnel Disaster Prevention Facility Installation and Management Guidelines" stipulate that ventilation facilities should be installed along with the extension of the tunnel. The ventilation system design factor considers the wind speed of the external natural wind to be at least 2.5 m/s, and it is applied upward according to the characteristics of the tunnel. As a result of analyzing the five-minute average wind speed data in the Daegwallyeong region for the past 6 years, it was analyzed that 15.8% of the windy days were winds of 10 m/s or more, and the maximum was 20 m/s. Therefore, in this study, when a fire occurs in a tunnel, the pattern of natural wind flowing into the tunnel and the backlayering distance of the tunnel fire smoke according to the maximum wind speed were analyzed. As a result, it was analyzed that a backflow of up to 490 m occurs when a gust of 20 m/s blows.

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

Experimental Study on the Determination of Critical Velocity for the Case of Fire in Long Traffic Tunnels (장대 교통터널 화재시 임계속도 결정에 관한 실험적 연구)

  • Yoon Chanhoon;Yoon Sungwook;Yoo Yongho;Kim Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, scaled model tests were carried out to decide the optimal critical velocity, to prevent back layering in the case of fire in a long traffic tunnel. Realistic estimates were made for the time required for people to escape ken the tunnel and far the time required by the ventilation operator to increase the system speed to full capacity. The analysis, predicts that the emergency ventilation will start about 240 seconds after the tunnel fire. It was also found that prevention of back layering would occur within 4 minutes after fan operation. To find out optimal critical velocity, a 1/50 scaled model tunnel(diameter : 0.2 m and length : 20 m) based on the Froude similarity technique was constructed. Changing $\beta$ values in the Tetzner's equation, smoke propagation was observed. From the experiment, it was concluded that using a $\beta$ value of 0.5 to prevent back layering successfully allowed time for safe evacuation.

u-Disaster Prevention System based Real-Time Fire Monitoring in a Building Facility (u-방재시스템 기반의 시설물 실시간 화재 모니터링)

  • Moon, Sung-Woo;Seong, Hyun-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • The building infrastructures such as high-rise buildings, shopping malls, exhibition centers, etc. are becoming larger in magnitude and more complex in complexity. Considering a large number of tenants and visitors are staying in these facilities, it is upper most important to keep those in safe from fire outbreak. In this paper, a u-Disaster Prevention System has been presented to provide effective fire evacuation when fire breaks out in building infrastructures. The ubiquitous sensor network (USN) technology was applied to detect heat and smoke from fire outbreak. The information then is transmitted wirelessly to a host computer. The tenants and visitors residing in the facility can evacuate following the instruction that is displayed in LED sign boards of the u-Disaster Prevention System. A case study shows that the ubiquitous environment can help people evacuate faster in time, shorter in distance with the assistance of the u-Disaster Prevention System.

Case Study of the Longest Roadway Tunnel in Korea, Baehuryeong Tunnel (국내 최장대 양방향 도로터널 설계사례-배후령터널)

  • Lee Seon-Bok;Je Hae-Chan
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.432-440
    • /
    • 2005
  • Baehuryeong tunnel connects Chuncheon with Hwacheon in Kangwon, Korea, This tunnel is a single tunnel with 5,057 m long and two bidirectional lanes which will be extended into low lanes in the future. The estimated construction period of Baehuryeong tunnel is approximately 55 months. This tunnel will become the longest bidirectional roadway tunnel in Korea. Compared to a twin tunnel, a bidirectional single tunnel has two major disadvantages with regard to the ventilation system and ease of escape during fire. For these reasons, a service tunnel and the transverse ventilation system are planned first time in Korea. In case of fire, the tunnel ventilation design aims to maintain a smoke free layer for passenger evacuation. The geology of Baehuryeong tunnel site is mainly composed of gneiss and granite. Baehuryeong fault is a mainly large scale fault which stands vertical and parallels with tunnel direction. The influenced zone of this fault is within 70 m. Baehuryeong tunnel was designed that it was separated with the distance of more than 100 m from Baehuryeong fault for its safety.

Numerical Study on the Effect of Heat Release Rate and Interior Opening on Fire Flow Velocity in the Case of Interior Fire in an Apartment Building (공동주택 화재 시 화재크기 및 실내 개구부 크기가 화재풍속에 미치는 영향에 관한 수치해석적 연구)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.37-43
    • /
    • 2014
  • In the case of interior fire in an apartment building, contamination of vestibule area by fire smoke before air fan operating when fire doors are open makes the evacuation of people very difficult. In order to investigate the effect of heat release rate (HRR) and interior opening on fire flow velocity, numerical simulations using Fire Dynamics Simulator were carried out. In simulations, actual dimensions and configuration of an apartment building were considered and interior leakage and HRR were varied. From simulation results, it was found that fire flow velocity distribution is significantly influenced by HRR and interior opening resulting in the change of the location of a neutral plane. Also, it is shown that there is a larger difference of the fire flow velocity between upper and lower part of the fire door when the neutral plane becomes closer to the ceiling.

The development of the escape light control system (유도등 제어시스템의 개발)

  • Kim, Dong-Ook;Mun, Hyun-Wook;Lee, Ki-Yeon;Kim, Dong-Woo;Gil, Hyung-Jun;Kim, Hyang-Kon;Chung, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.52-58
    • /
    • 2009
  • When a fire breaks out, it is frequent that large sized miserable death is happened by seriousness of poisonous gas and peculiarity of space because the building construction is recently more complex and diverse. So early countermeasure in preparation for evacuation escape linked directly with a loss of lives is pressing. Because escape light that mark fixing one-way of existing way is not efficiently extricated refugees from dangers when a fire breaks out, construction of system that can extricate refugees from dangers and suppress early a fire by grasping correctly fire point is required urgently. When a fire breaks out, all escape lights connected with fire sensor and reception group which have ill aiming in these point will lead people to safe emergency entrance of opposite direction of place that a fire is broken out after being calculated the direction and speed of flame and smoke. There is the purpose of my research in development of artificial intelligent directional escape light that can mark direction to most suitable pull-out and assist in early extinguishing a fire.