This study was designed to investigate the effect of Gibson's smile exercise. The author took the smile photographs of 35 university students who appeared unnatural smiles though they had good dentition or well restored state of their teeth. The author explained Gibson's smile exercise and they trained their perioral muscles during 4 weeks at home. The smile photographs were taken at regular intervals, before the smile exercise, 2 weeks after and 4 weeks after the smile exercise. And then, esthetic smile scores were estimated by 10 appraisers who were dentists. Some questionares were taken aftersmile exercise. And acquired scores were analized statistically using the SPSS program. The results obtained were as follows. 1. The smile scores of 2 weeks after and 4 weeks after the smile exercise were higher than before the smile exercise. 2. The smile scores of 4 weeks after the smile exercise were higher than 2 weeks after the smile exercise. 3. The smile scores of the group interested in smiles were higher than the group not interested in smiles at 2 weeks after and 4 weeks after the smile exercise, but before the smile exercise there was no difference between two groups.
Objective: This study aimed to quantitatively assess the relationship of smile esthetic variables with various types of malocclusion, and identify the cephalometric factors affecting smile measurements. Methods: This retrospective study included 106 patients who were treated with retention at the orthodontic department of Taipei Medical University Hospital. Hard-tissue variables were measured using lateral cephalographic tracings, and nine smile esthetic variables were measured using facial photographs. The patients were divided into three groups according to their overjet (< 0, 0-4, and > 4 mm). An analysis of variance was conducted to compare the pretreatment cephalometric variables and smile esthetic variables among the three groups. Multiple linear regression analysis was performed to identify the cephalometric factors affecting the smile measurements in each group. Results: Except the upper midline and buccal corridor ratio, all of the smile measurements differed significantly among the three groups before orthodontic treatment. Some of the smile characteristics were correlated with the cephalometric measurements in different types of malocclusion. The overjet was the major factor influencing the smile pattern in all three types of malocclusion. Conclusions: Smile characteristics differ between different types of malocclusion; the smile may be influenced by skeletal pattern, dental procumbency, or facial type. These findings indicate that establishment of an optimal horizontal anterior teeth relationship is the key to improving the smile characteristics in different types of malocclusion.
Kim, Hyun-Seong;Kim, Il-Pyung;Oh, Sang-Chun;Dong, Jin-Keun
The Journal of Korean Academy of Prosthodontics
/
제34권4호
/
pp.687-697
/
1996
There has been a lot of research into the essence of the smile, but so far just a few studies have been done on the relationship between personality and smile. On the assumption that smile aesthetics are closely related to individual physical condition and psychological state, this study investigated the correlation between personality factors and smile scores. The Personality Factor Questionnaire test was administered to 60 university students (male : 30, female : 30) who have no teeth missing, no experience of orthodontic or prosthodontic treatment and good dentition. Then, portraits were taken in a full smile. Esthetic smile scores were estimated by 10 appraisers who were dentists. These scores were analyzed statistically using the SAS program. The following results were obtained. 1. Personality factors of Warmth, Stableness, Surgency, Boldness, Untroubled-adequacy, Group-dependence, Relaxation, Extraversion, Low anxiety were positively correlated to the aesthetic level of smile. 2. For females, personality factors had greater influence on smile aesthetics, whereas male smile aesthetics were less influenced by personality factors.
In this paper, we propose a method to reduce age distortion in facial expression image generation using StyleGAN Encoder. The facial expression image generation process first creates a face image using StyleGAN Encoder, and changes the expression by applying the learned boundary to the latent vector using SVM. However, when learning the boundary of a smiling expression, age distortion occurs due to changes in facial expression. The smile boundary created in SVM learning for smiling expressions includes wrinkles caused by changes in facial expressions as learning elements, and it is determined that age characteristics were also learned. To solve this problem, the proposed method calculates the correlation coefficient between the smile boundary and the age boundary and uses this to introduce a method of adjusting the age boundary at the smile boundary in proportion to the correlation coefficient. To confirm the effectiveness of the proposed method, the results of an experiment using the FFHQ dataset, a publicly available standard face dataset, and measuring the FID score are as follows. In the smile image, compared to the existing method, the FID score of the smile image generated by the ground truth and the proposed method was improved by about 0.46. In addition, compared to the existing method in the smile image, the FID score of the image generated by StyleGAN Encoder and the smile image generated by the proposed method improved by about 1.031. In non-smile images, compared to the existing method, the FID score of the non-smile image generated by the ground truth and the method proposed in this paper was improved by about 2.25. In addition, compared to the existing method in non-smile images, it was confirmed that the FID score of the image generated by StyleGAN Encoder and the non-smile image generated by the proposed method improved by about 1.908. Meanwhile, as a result of estimating the age of each generated facial expression image and measuring the estimated age and MSE of the image generated with StyleGAN Encoder, compared to the existing method, the proposed method has an average age of about 1.5 in smile images and about 1.63 in non-smile images. Performance was improved, proving the effectiveness of the proposed method.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
한국추진공학회 2007년도 제28회 춘계학술대회논문집
/
pp.30-33
/
2007
DSMC method is now widely accepted CFD approach to compute and simulate the nozzle plume in rarefied regimes. In this study, using SMILE(Statistical Modeling in Low-density Environment) code which was developed in ITAM, Russia and coded using DSMC method, the internal flow of the Rothe micronozzle was simulated. Moreover, to show the validity of the SMILE code, the centerline temperatures according to the Reynold's number were compared with the ones obtained by the Rothe's experiment.
This study was performed to mark the criteria of the eathetic smile that was necessary to improve the esthetic problem in oral maxillo-facial region. The facial straight photographs of 62 adults(30 males, 32 females : 19-24 years old) in resting position and during smile were taken. The measurements and proportion of lip-teeth relationship during smile were statistically analyzed with photogrammetry. The following results wow obtained : 1. In the evaluation of the change of lips, smile line ratio was 0.93, buccal corridor ratio was 0.63, and smile symmetry ratio was 0.96. 2. The width of mouth during smile was 1.31 times of the width inthe resting position and 0.48 times of face width. 3. The upper lip height during smile was 0.69 times of the height in the resting position and the lower lip height during smile was 0.93 times of the height in the resting position. 4. The mean exposed lenght of upper central incisor was 9.96mm. Maxillary incisor exposure was significantly correlated with the upper lip change ratio, mouth width change ratio, and buccal corridor ratio.
In this study, we propose an automated smile analysis system for self smile training. The proposed system detects the face area from the input image with the AdaBoost algorithm, followed by identifying facial features based on the face shape model generated by using an ASM(active shpae model). Once facial features are identified, the lip line and teeth area necessary for smile analysis are detected. It is necessary to judge the relationship between the lip line and teeth for smiling degree analysis, and to this end, the second differentiation of the teeth image is carried out, and then individual the teeth areas are identified by means of histogram projection on the vertical axis and horizontal axis. An analysis of the lip line and individual the teeth areas allows for an automated analysis of smiling degree of users, enabling users to check their smiling degree on a real time basis. The developed system in this study exhibited an error of 8.6% or below, compared to previous smile analysis results released by dental clinics for smile training, and it is expected to be used directly by users for smile training.
This study was designed to investigate the effect of missing teeth, prosthesis and malalignment on the smile. The full smile photographs of 145 Korean adults(male 114 : female 31) were taken and classified by the lip pattern, the relationship between the lip and the teeth, and the number of teeth displayed in a smile. Besides, the esthetic smile score were estimated by five dentists. Obtained data were compared and analyzed. The results obtained were as follows : 1. The esthetic level of missing teeth group and malaligned group was lower than that of the normal group. 2. The esthetic level of prosthesis group had no difference with that of the normal group. 3. The Number of teeth displayed in a smile had the most effect on the esthetic level in each experimental group.
Journal of the Korea Society of Computer and Information
/
제15권4호
/
pp.47-55
/
2010
In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.
Journal of the Korean Institute of Telematics and Electronics A
/
제29A권4호
/
pp.64-73
/
1992
This paper presents the design of multi-level logic optimization algorithm and the development of the SMILE system based on the algorithm. Considering the fanin constraints in algorithmic level, SMILE performs global and local optimization in a predefined sequence using heuristic information. Designed under the Sogang Silicon Compiler design environment, SMILE takes the SLIF netlist or Berkeley equation formats obtained from high-level synthesis process, and generates the optimized circuits in the same format. Experimental results show that SMILE produces the promising results for some circuits from MCNC benchmarks, comparable to the popularly used multi-level logic optimization system, MIS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.