With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.
최근 이슈가 되어온 스마트폰에는 고해상도 카메라, Assisted GPS, 가속도계, 자이로스코프, 그리고 자기 계측 센서와 같이 측량에 직접 이용할 수 있는 다양한 센서들이 탑재되어 있다. 본 연구는 고해상도 영상을 제공하는 스마트폰 카메라를 검정하고 그 정확도를 평가함으로써, 사진측량에 스마트폰 영상의 활용 가능성을 제시하는데 그 목적을 둔다. 먼저, 스마트폰 카메라의 정확도 평가에 앞서 각 카메라의 렌즈 왜곡을 보정하기 위한 카메라 검정이 이루어졌고, 이 과정에서 광속조정에 의해 계산된 영상 좌표 및 대상물 좌표의 정확도를 분석하였다. 또한, 3차원 위치 결정에 있어 렌즈 왜곡 계수의 고려 유무에 따른 결과 분석이 이루어졌고, 최종적으로 측량용 카메라에 대한 스마트폰 카메라의 상대 정확도를 평가하였다. 그 결과, 스마트폰 카메라의 왜곡 보정에 있어 고차항의 방사 왜곡 계수도 고려되어야 하며, 측량용 카메라에 의한 결과와 미소한 차이를 나타내어 사진측량에 스마트폰 영상의 활용 가능성이 클 것으로 기대된다.
드론사진측량은 일반적으로 상공에서 수직 또는 경사로 영상을 획득하므로 3차원 모델링을 위한 목적으로 촬영할 경우 건물의 지면부분에 대한 영상매칭과 점군데이터의 공간정확도가 불량하여 3D메쉬의 완성도가 떨어진다. 따라서 본 연구에서는 이를 극복하기 위해 드론영상과 지상에서 스마트폰 영상을 획득하여 각각의 공간정확도를 분석함은 물론 드론영상에 스마트폰영상을 조합하지 않았을 경우와 조합해석 했을 경우의 정확도 향상과 3D메쉬의 완성도를 평가하였다. 연구결과 드론사진측량의 수평(x,y)정확도는 1/200,000정도로 전통적인 사진측량 정확도와 유사하였다. 또한, 촬영방법에 따른 정확도는 사진맷수의 증가보다 대상물에 대한 촬영각도에 영향을 더 받는 것으로 분석되었다. 스마트폰영상 조합의 경우 정확도에 별다른 영향을 미치지 않았으나 3D메쉬의 완성도는 디지털트윈시티 기준을 만족하는 LoD3급의 3D메쉬를 얻을 수 있었다. 따라서, 드론영상과 지상에서 촬영한 스마트폰 또는 DSLR영상을 조합처리 함으로써 디지털트윈시티를 위한 3D모델 구축에 충분히 활용할 수 있을 것으로 판단된다.
사진 촬영 당시의 외부표정요소 추정 방법에는 공선조건식 기반 후방교회법이 널리 사용되지만 초기값을 필요로 하고, 그 값에 민감하다는 단점이 있다. 본 연구에서는 초기값을 필요로 하지 않는 외부표정요소 알고리즘인 쿼터니언 기반 공간후방교회법과 PnP (Perspective-n-Point algorithm)을 소개하고 그 결과를 비교하였다. 두 결과를 비교하기 위하여 일반 스마트폰으로 취득한 영상을 사용하였고, 지상기준점 취득은 본 연구진이 보유하고 있는 하이브리드 MMS (Mobile Mapping System) 점군 자료를 이용하였다. 그 결과, 공선조건식 기반 SPR (Single Photo Resection)을 참값으로 할 때, 쿼터니언 기반 SPR이 PnP 알고리즘에 비해 자세각 추정 정확도가 높았다. 카메라 위치추정의 경우에는 두 알고리즘 모두 지상기준점과 비교했을 때 0.8m 내의 정확도를 보임을 확인하였다.
The advent of a fourth industrial revolution, built on advances in digital technology, has coincided with studies using various unmanned aerial vehicles (UAVs) being performed worldwide. However, the accuracy of different sensors and their suitability for particular research studies are factors that need to be carefully evaluated. In this study, we evaluated UAV photogrammetry using smart technology. To assess the performance of digital photogrammetry, the accuracy of common procedures for generating orthomosaic images and digital surface models (DSMs) using terrestrial laser scanning (TLS) techniques was measured. Two different type of non-surveying camera(Smartphone camera, fisheye camera) were attached to UAV platform. For fisheye camera, lens distortion was corrected by considering characteristics of lens. Accuracy of orthoimage and DSM generated were comparatively analyzed using aerial and TLS data. Accuracy comparison analysis proceeded as follows. First, we used Ortho mosaic image to compare the check point with a certain area. In addition, vertical errors of camera DSM were compared and analyzed based on TLS. In this study, we propose and evaluate the feasibility of UAV photogrammetry which can acquire 3 - D spatial information at low cost in a construction site.
기존의 교통정보 수집 인프라는 고속도로와 국도 위주로 구축되어 있어 그 주변지역의 좁은 도로에 대한 교통상황을 정확하게 알 수 없어 교통정보의 신뢰성이 떨어짐으로써 내비게이션 등의 교통정보를 이용하는 사용자들에게 신뢰도 높은 교통정보를 제공하기 어려운 실정이다. 따라서 본 연구에서는 광역의 모니터링이 가능한 비행선을 이용하여 항공영상을 수집하고, 그 수집된 데이터로부터 차량속도를 추출하는 방법을 제시하였으며, 추출된 차량속도의 정확도를 검증하기 위한 실험도 수행하였다. 본 연구에서 제시한 차량속도 추출 방법은 교통 모니터링의 수요 증대에 따른 새로운 접근의 교통정보를 추출하는데 이용이 가능하며, 항공영상을 이용한 차량 및 교통정보 추출 기술에 있어 새로운 연구 트렌드로 자리매김할 것으로 예상된다.
There has been a need for replacing human labors with a robot in such dangerous and hard jobs of various construction sites. For that reason, many researches have been made about the high quality robot, which performs its duty instead of human labors. This study is about auto surveying system development based on VRS-GPS which enables autodriving in dangerous areas where it's difficult for humans to measure directly. This study is about the auto-surveying system development, based on VRS-GPS, which enables auto-drive in dangerous areas, whereas difficult for humans to measure directly. The GPS is made with GRXI and SHC250 controllers of the SOKKIA company. The auto surveying system is composed of DPS module, geomagnetism sensor, bluetooth, gimbals, IMU, etc to automatic drive via enter into a route of position. The developed auto surveying system has installed the carmeras for front and vertical axis as well as systems to grasp situation of surveying with smartphone in real time. The result from analysed RMSE of auto surveying system and VRS-GPS surveying is 0.0169m of X-axis and 0.0246m of Y-axis.
최근 스마트폰에 내장된 센서 및 디바이스를 이용한 응용 개발 및 활용 방안에 대한 연구가 국내외에서 활발히 진행되고 있다. 본 연구의 목적은 스마트폰을 활용한 사진측량시스템 개발에 앞서 근접한 대상물의 3차원 위치결정에서의 스마트폰 영상의 정확도를 분석하고, 그 활용 가능성을 평가하는 것이다. 먼저, 자동 초점과 무한대 초점에서 카메라 검정이 수행되었다. 카메라 검정에서 렌즈 왜곡 계수의 결정은 balance 방식과 unbalance 방식의 왜곡 모델을 이용하였고, 16가지 프로젝트로 구분하여 검정한 결과, 모든 경우에 1 mm 이내의 번들조정 RMS 오차를 나타냈다. 또한 S와 S2 모델에 대한 자동 및 무한대 초점에서 왜곡 곡선의 패턴이 거의 유사하게 나타나 초점 모드에 따른 왜곡 패턴의 변화는 극히 미소한 것으로 판단된다. 자동과 무한대 초점에 따른 결과 비교와 다중영상 처리에 사용된 소프트웨어에 따른 결과 비교에서 모든 경우에 ${\pm}3$ mm 이내의 표준편차를 나타내어 초점 모드와 왜곡 모델에 따른 3차원 위치결정에서의 결과 차이는 거의 없는 것으로 판단된다. 끝으로 토탈스테이션에 의한 검사점 성과를 최확값으로 하고 각 프로젝트별로 결정된 검사점 성과를 관측값으로 하여 각 방법별 잔차에 대한 통계치를 계산한 결과, 모든 프로젝트에서 X, Z방향에 비해 촬영거리방향인 Y방향으로 비교적 큰 오차가 발생했다. 이상과 같이 근접 대상물의 3차원 위치결정에 있어 정확도 측면에서 스마트폰 카메라의 활용이 가능할 것으로 기대된다.
일상생활에 미치는 영향이 확산되고 있는 상황인식서비는 위치기반서비스와 소셜네트워크서비스로 분류되며, 스마트폰의 GPS 및 전자나침반 기술의 정확도에 따라 상황인식서비스 품질이 달라질 수 있다. 본 연구에서는 상황인식서비스를 이용할 때 가장 중요한 단초가 될 수 있는 GPS, 전자나침반(Digital Compass), 무선통신, 공간정보(Geospatial Web)를 활용함에 있어서의 위치적 정확도에 대하여 분석하였다. 스마트폰을 이용한 위치 및 방향 결정 정확도 실험 결과 실외에 비하여 낮은 실내 위치 및 방향 정확도와 플랫폼으로 활용되는 공간정보가 갖고 있는 오차에 의해 상황인식서비스 이용 시 정확한 정보를 제공 받지 못하는 문제점이 발생하는 것으로 나타났다. 실내 위치 결정 정확도 향상 방안으로 Wi-Fi를 이용한 측위 방법 등이 있으나 실외에서 사용하는 GPS에 비해 많은 보완 사항이 있는 것으로 나타났으며, 상황인식서비스의 플랫폼으로 활용되는 공간정보의 품질 향상을 위하여 DSM을 이용해 폐색영역을 보정한 실감 정사영상의 제작이 필요한 것으로 판단된다.
With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.