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Abstract
With the increasing demands of 3D spatial information in urban environment, the importance of point 

clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the 
high accuracy and density is required to describe the detail information of building components. Since the 
terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-
built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D 
reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-
based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor 
structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present 
the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a 
roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point 
clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that 
the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial 
LiDAR is suitable for detail 3D outdoor modeling.

Keywords : �Terrestrial LiDAR, Image-based 3D Reconstruction, Building Information Modelling (BIM), point 
clouds, Structure from Motion (SfM)

557  

ISSN 1598-4850(Print)
ISSN 2288-260X(Online)
 Original article

Received 2015. 11. 30, Revised 2015. 12. 24, Accepted 2015. 12. 31
1) School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea (E-mail: ontheground@yonsei.ac.kr)
2) Member, School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea (E-mail: hotaeim@yonsei.ac.kr)
3) School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea (E-mail: xkwks4568@yonsei.ac.kr)
4) School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea (E-mail: moncher@yonsei.ac.kr)
5) Member, School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea (E-mail: f15kdaum@yonsei.ac.kr)
6) Corresponding Author, Member, School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea (E-mail: sohn1@yonsei.ac.kr)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

1. Introduction

Recently, 3D spatial information is becoming necessary 
in various fields, such as robotics, disaster management, 
and Information and Communication Technology 
(ICT). Moreover, those developments in smartphones 
and telecommunication environments have accelerated 
the utilization of 3D spatial information. In particular, 

there are increasing demands for accurate and precise 
construction of 3D spatial information in the Building 
Information Modelling (BIM) field in order to measure, 
inspect, and verify the safety of structures (Randall, 2011; 
Isikdag et al., 2013). However, the acquisition of accurate 
and precise 3D spatial data is a laborious and costly task. 
For the reason, researchers currently perform studies in 
developing more efficient techniques in cost and time.
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Those acquisition methods for 3D data can be classified 
into two major categories; one is the range-based technique 
using a Light Detecting and Ranging (LiDAR), while the 
other is image-based 3D reconstruction techniques based 
on the principle of the photogrammetry and computer 
vision (Tang et al., 2010; Klein et al., 2012). The terrestrial 
LiDAR collects the 3D data of target objects by bouncing 
light off from the object and contours an image on the 
basis of light-return rates and angles. The terrestrial 
LiDAR has been verified as the most superior solution for 
3D data acquisition in terms of getting accurate and dense 
point data in relatively short time (Jazayeri et al., 2014; 
Cho et al., 2015). The terrestrial LiDAR has been utilized 
to acquire accurate 3D point clouds data in various fields, 
such as construction management (Su et al., 2006), forest 
science (Dassot et al., 2011), landslide monitoring (Jones, 
2006), and snow depth measurement (Prokop, 2008). The 
point clouds observed by terrestrial LiDAR have been 
specifically applied in the field of BIM to improve the 
efficiency for facility management of indoor and outdoor 
environments (Tang et al., 2010; Jung et al., 2014; Hong et 
al., 2015). Randall (2011) conceptually proposed standards 
for building information modelling based on point clouds, 
gathered from the LiDAR. According to the propose, 
the point clouds for structural analysis and inspection 
needs 1cm of accuracy, while it needs 1m of accuracy for 
rapid urban modelling. However, in the study, an actual 
test had not been conducted, whereas there was also no 
well-defined evaluation standard yet for evaluating the 
performance of 3D BIM construction.

Despite of its accuracy and productivity, the terrestrial 
LiDAR device accompanies a financially big concern 
for general uses due to its expensive costs, more than a 
hundred thousand dollars. An alternative solution to reduce 
the cost of point clouds acquisition is the image-based 
3D reconstruction techniques, which have been already 
applied in some commercial fields via image big data 
collected from the internet (Snavely et al., 2007; Uricchio, 
2011). The Image-based 3D reconstruction techniques, 
which can be conducted automatically with a relatively 
low cost, have been studied for various applications, such 
as construction sites (Golparvar-Fard et al., 2011), facility 

management (Bhatla et al., 2012), and archaeology (Brutto 
and Meli, 2012; Kersten and Lindstaedt, 2012; De Reu et 
al., 2013). 

However, when using multiple image data from 
uncertain sources, the quality of final products could be 
negatively affected by the inconsistency in captured date, 
weather conditions, resolution, as well as the ambiguity of 
image geometry. Due to the qualitative uncertainty of 3D 
point clouds generated from multiple sources, a qualitative 
analysis evaluating the performance of the image-based 
3D reconstruction techniques has been conducted. In 
fact, the results were cross analyzed with the observed 
data from traditional measuring method (Dai and Lu, 
2010) and terrestrial LiDAR data (Dai et al., 2013). In 
addition, Bhatla (2012) conducted the image-based as-
built 3D modeling of bridge, which compared with the 
3D model generated from 2D drawings, and Yang et al. 
(2013) applied the image-based 3D reconstruction to an 
augmented reality technique. 

Previous studies had verified the performance of 
image-based 3D reconstruction technique for various 
applications. For as-built BIM, accuracy and point density 
of a point clouds must be achieved in centimeter level 
to express the detail geometric information of building 
structures. Since the distance between target and camera 
sensor was not close in outdoor observation, those point 
clouds from multiple images cannot ensure their point 
density and accuracy without special platforms, such as 
an unmanned areal vehicle (UAV) (Dai et al., 2013). 

In this regard, this paper has conducted the evaluation of 
image-based 3D reconstruction technique and terrestrial 
LiDAR, in terms of establishing as-built BIM of outdoor 
structures. Also, their performances were compared with 
respect to noise ratio, point density, and accuracy. Images 
for generating a point clouds were collected by smartphone 
camera and Digital Single-Lens Reflex (DSLR) camera, 
which can be easily used by general users with the low 
cost. A terrestrial LiDAR device of pulsed type, which 
is widely used for outdoor observation, was selected. For 
the comparison analysis, the coordinate system of point 
clouds from multiple images was converted into the 
coordinate system of the LiDAR data, using 3D conformal 
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transformation and Iterative Closest Point (ICP) algorithm. 
For the accuracy comparison, those checking points were 
extracted by the RANdom SAmple Consensus (RANSAC) 
algorithm.

2. Methodology

In the paper, the image-based 3D reconstruction method 
and the terrestrial LiDAR scannning for 3D modelling 
of outdoor building were conducted independently and 
compared in terms of the point density and accuracy. The 
overall process is summarized in Fig. 1.

2.1 Test site and device

In comparing the image-based 3D reconstruction 
technique and the terrestrial LiDAR scanning for outdoor 
modelling, the outdoor building image of size is 50 m x 15 m 
x 35 m was selected. The test building presents in the Fig.2, 
including front door with stair, windows, roof, and many 
other building components, which are generally considered 
as structures in outdoor building modelling.

The Leica ScanStation 2 was used for the LiDAR 
scanning and its specification was summarized in Table 1 
(Leica Geosystems, 2007). As shown in Table 1, the Leica 
ScanStation 2, which is the pulsed type scanner, has an 

effective range of 300 m and positioning accuracy of 6 mm. 
A smartphone camera and a DSLR camera were used 

Fig. 1. Flowchart of overall process

Fig. 2. Test site for 3D outdoor modelling: (a) top view, 
and (b) side view

(a)

(b)

Table 1. Specification of Leica Scanstation 2

Type Pulsed

Range 300m@90%, 
134m@18% albedo

Scan rate Up to 50,000 points/sec

Accuracy of
single

measurement*

Position* 6mm

Distance* 4mm

Angle 60µrad

Field of view
Horizontal 360° (maximum)

Vertical 270° (maximum)

Weight 18.5 kg

Size (depth, width, height) 265, 370, 510 mm

Camera Integrated high-
resolution digital camera

* At 1 m∼50 m range, one sigma
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to evaluate the performance of the image-based 3D 
reconstruction technique. The Table 2 shows the specification 
of the smartphone and the DSLR camera, which are used in 
the experiments. As shown in Table 2, the spatial resolutions 
of the smartphone images were lower than those of the DSLR 
images.

2.2 Terrestrial LiDAR scanning

Since the single-scanned data cannot cover every side of 
the building, the multiple scanning process and registration 
process to convert the relative coordinate systems of the 
multi-scanned data to a common coordinate system are 
required. The registration can be classified into the target-free 
method and the target-based method. The target-free method 
based on the ICP algorithm can automatically perform the 
registration, but the accuracy cannot be guaranteed. Thus, 
the target-based method using artifacts, such as sphere, 
paddle, and paper targets and natural point features is 
generally applied for as-built BIM due to its accuracy and 
efficiency. In this study, natural point features in overlapped 
areas were manually extracted and used for the target-based 
registration. In addition, target-free method was applied to 
improve precision of registration.

A model for the registration of point clouds with an absolute 
scale factor can be conducted on the basis of 3D rigid body 
transformation, which includes a rotation matrix (     
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),and 
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). The model equation can 
be represented by Eq. (1):
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 are the 3D coordinates of the 
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 are the original 3D 
coordinates of the observed points, and is the rotation matrix. 
This can be calculated as follows:
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 are the rotation angles about X-axis, 
Y-axis, and Z-axis, respectively.

The 3D rigid body transformation requires at least 
two matching points to estimate the six transformation 
parameters. However, it is difficult to extract the accurate 3D 
coordinates of common point features in overlapped point 
clouds. To overcome the locational ambiguity of matching 
points, the ICP algorithm can be additionally applied for a 
robust registration. The ICP algorithm iteratively finds the 
closest points in a pair of point clouds and automatically 
estimates transformation parameters for the minimization 
of locational inconsistency between a pair of point clouds 
(Besl and McKay, 1992). After the target-based registration 
using the point features is conducted, the ICP algorithm can 
be additionally conducted to improve precision of the aligned 
point clouds.

2.3 Image-based 3D reconstruction

The Structure-from-Motion (SfM) technique-based on 
the integration of the principle of photogrammetry and 
computer vision- is known as the most practical solution to 
generate a point cloud from hundreds or thousands of images 
of which camera parameters and orientations are unknown 
(Golparvar-Fard et al., 2011; Brutto and Meli, 2012). Since 
the interior orientation parameters of a focal length and lens 
distortion are estimated relatively in the SfM process, the 
process for estimating camera parameters distortions can be 
omitted (Golparvar-Fard et al., 2011).

The flowchart of image-based 3D reconstruction is 

Table 2. Specification of the utilized smartphone and 
DSLR cameras

Specification Smartphone 
camera DSLR camera

Model Samsung 
Galaxy S II

Canon EOS  
Rebel T3i

Sensor type CMOS CMOS
Sensor format 1/3.2″ APS-C

Sensor size 4.54mm × 3.42mm 22.30mm × 14.90mm
Pixel Pitch 1.39 μm 4.30 μm

Focus mode Autofocus Autofocus
Image size 3264 × 2448 5184 × 3456

Focal length 4 mm 17 mm
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represented in Fig. 3 (Snavely et al., 2006). To generate point 
clouds from multiple image sets, feature points must be 
extracted and conjugate point sets are determined from the 
feature points. To extract featured points for generating point 
clouds, those keypoint detection and matching procedures 
were conducted on the basis of the Scale Invariant Feature 
Transform (SIFT) algorithm. By the SIFT algorithm, the 
featured points in each image are extracted automatically as 
SIFT keypoints (Lowe, 2004). The correspondence between 
the SIFT keypoints is calculated and matched based on the 
nearest neighborhood matching scheme and the RANSAC 
algorithm. Then, conjugate point sets are determined and 
utilized to relatively estimate the camera parameters, such as 
the focal length, lens distortions, location, and view angle. At 
first, the camera parameters of a single pair of images having 
a large number of conjugate points and long baseline are 
estimated; then, the camera parameters of additional cameras 
were initialized based on direct linear transformation (DLT) 
with RANSAC scheme to avoid getting stuck in the bad local 
minima (Hartley and Zisserman, 2003); Lastly, the initialized 

parameters were optimized based on bundle adjustment and 
point clouds following to the process (Lourakis and Argyros, 
2004).

Software based on the SfM process has been developed 
as an open source software, commercial packages and 
web-based services (Bartoš et al., 2014). In particular, 
the Photosynth - a web-based free software provided by 
Microsoft - has been utilized to acquire 3D point clouds data 
for various researches (Snavely et al., 2006; Dowling et al., 
2009; Pomaska, 2009; Hwang et al., 2012; Microsoft, 2015). 
In the study, we applied Microsoft’s Photosynth for the image-
based 3D reconstruction technique. By the program, the SfM 
process was conducted automatically, so as point clouds were 
generated from multiple image sets capturing targets.

2.4 Accuracy assessment

For accuracy assessment of the image-based 3D 
reconstruction technique, it is necessary to perform a 
registration process converting coordinate system of 
generated point clouds into the common coordinate system. 
Unlike the registration process between sets of terrestrial 
LiDAR scanning data, the point clouds from the image-
based 3D reconstruction technique had a relative scale factor 
and coordinate system. Therefore, the registration process to 
convert coordinate systems of point clouds sets into common 
coordinate system with an absolute scale was conducted 
based on the 3D conformal transformation, which includes 
scale parameter (
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), rotation matrix, and translation vector. 
To estimate the scale, rotation and translation parameters, the 
five matching points are required at least. The equation of 
3D conformal transformation can be represented by Eq. (3):
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 (3)

In this paper, the registration process, based on the 3D 
conformal transformation, and the ICP algorithm was 
conducted sequentially. Since we could acquire precise point 
clouds having an actual scale with the terrestrial LiDAR, the 
point clouds generated by the image-based 3D reconstruction 
techniques were converted into the coordinate system of 
the LiDAR data. The 3D conformal transformation was Fig. 3. Flowchart of image-based 3D reconstruction
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conducted using manually selected matching points, as the 
estimated parameters were used as the initial values for the 
ICP algorithm. Since the accuracy of the ICP algorithm can 
be affected by noise points in point clouds, we checked the 
effect of noise points on the accuracy of the ICP algorithm to 
merge a pair of point clouds from difference sources.

After the registration of the point clouds sets, an accuracy 
assessment was conducted using the intersection points 
of main wall components of the test building. RANSAC, 
proposed by Fischler and Bolles (1981), was applied to 
estimate plane model parameters from the observed point 
clouds including noises. To find the best plane model of the 
point clouds data, the RANSAC algorithm randomly selects 
the sample points to estimate the candidate planes and check 
a number of points including in the plane models. A model 
equation of the plane inside the RANSAC algorithm can be 
defined by Eq. (4):
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  (4)

where, a, b, c and d are the parameters of the plane model, x, y  
and z are the 3D coordinates of a point. Since the parameters 
of the plane model are dependent, constraints listed in Eq. (5) 
and Eq. (6) are required.
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 (5)
 (6)

The main plane components extracted from each point 
clouds were used to calculate intersection points for the 
accuracy assessment. The Fig. 4 describes the intersection 
of planes. As shown in Fig. 4, three plane components can 
determine a intersection point.

In this paper, since the image-based 3D reconstruction 
techniques cannot guarantee the accuracy of point clouds, 
the accuracy assessments of were conducted based on the 
terrestrial LiDAR data as ground truth. For the accuracy 
comparison, those wall components in generated point 
clouds were extracted based on the RANSAC scheme, while 
intersection points were determined from the extracted 
planar wall models. By RANSAC algorithm, the main wall 
components in point clouds could be extracted automatically, 
when the extracted wall components were labelled manually.

3. Experiments and Results

3.1 Results of terrestrial LiDAR scanning

To cover every side of the test building, terrestrial LiDAR 
scans were conducted five times. The point clouds density 

Fig. 4. Relationship between planes and intersection points

Fig. 5. Location of terrestrial LiDAR stations for scanning

Fig. 6. Point clouds observed by a terrestrial LiDAR: 
(a) original point clouds (box: noisy information such as 

adjacent buildings, cars, people and trees; number of noise 
points: 222,834), and (b) remaining noise-removed point 

clouds (number of points: 3,999,133)

(a) (b)
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was about 1 cm at 10 m from the LiDAR and the distances 
between the LiDAR, and the target were from 20 m to 30 
m. The Fig. 5 illuminates the location of Terrestrial LiDAR 
station for scanning.

A total number of 4,221,967 points were acquired and 
222,834 points - such as adjacent buildings, cars, people, 
and trees - were removed as noisy information. A Fig. 6 
illuminates the original point clouds and noise-removed 
point clouds. As shown in the Fig. 6, although the incidence 
angles of laser beam on roofs were steep, point clouds was 
clearly presented. 

3.2 Results of the image-based 3D reconstruction

Both the smartphones and the DSLR cameras captured 
400 images of the test building, respectively. The image 
collection was conducted from various angles and locations 
to ensure sufficient geometric data for generating point 
clouds. A Fig. 7. represents the geometry of used images 
and generated point clouds from multiple images. As shown 
in Fig. 7, the images were configured in relative coordinate 
system and generated a point clouds. 

Each image set obtained using the smartphones and 
the DSLR camera was respectively used for point clouds 
generation. In addition, the point clouds was generated 
using all of the collected images by both camera sensors. 
The Fig. 8 represents the point clouds created by the image-
based 3D reconstruction technique. As shown in Fig. 8, the 
point clouds, which were generated by the image-based 
reconstruction technique, could roughly represent an as-built 
building in an outdoor environment.

The number of points created from the smartphone 
and the DSLR camera images were 635,140, 226,060, and 
857,344 points, in order. The point clouds achieved from the 
camera images were much sparser than those observed by 
the terrestrial LiDAR. Not only that, the roof components 
of the building could not be represented in point clouds 
form because of the repetitive roof pattern, steep view 
angle, and low spatial resolution of the terrestrial camera 
images.

The point clouds created from the smartphone images, 
the DSLR camera images, and the entire images had 24.7 
%, 13.6 % and 11.1 % of the noise points, respectively. The 
point clouds created from the smartphone images had more 
noises and lower precision than the other point clouds. The 
point clouds created from the entire images, which had 
different spatial resolutions and geometry, had the most 
detail information.

As shown in Fig. 9, comparing to the LiDAR scanning 
data, the point clouds created by the image-based 3D 
reconstruction technique had much more noisy points near 
the wall and could not express the detail information such as Fig. 7. Geometry of images used for point clouds generation

Fig. 8. The point clouds achieved by the image-based 3D reconstruction technique: (a) using smartphone camera (number 
of images: 400 / number of points: 635,140 / number of noise points: 157,359), (b) using DSLR camera (number of images: 

400 / number of points: 226,060 / number of noise points: 30,645), and (c) using smartphone and DSLR cameras (number of 
images: 800 / number of points: 857,344 / number of noise points: 95,402)

(a) (b) (c)
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windows, stairs, and doors in high level 3D outdoor modeling. 
Despite of its financial merit for the general users, the point 
clouds generated from multiple images were insufficient for 
as-built 3D modeling of outdoor buildings.

3.3 Results of the accuracy assessment

For the accuracy assessment, the main wall planes of a 
test building were estimated from each point clouds based 
on the RANSAC algorithm. Since the roof components in 
the point clouds achieved from camera images, however, 
could not be extracted because of its low point density. The 
accuracy assessment of image-based 3D reconstruction 
technique was conducted on the 2D horizontal coordinate 
system. Each plane was projected on the XY plane and the 

Fig. 9. Expressiveness of the point clouds achieved by LiDAR and camera images: (a) using LiDAR, (b) using smartphone 
camera images, and (c) using DSLR camera images (d) using smartphone and DSLR cameras images

Fig. 10. LiDAR scanning data projected on the XY plane 
and the location and label of check points for accuracy 

assessment

Table 3. Result of accuracy assessment: (Case #1) applying the 3D conformal transformation, (Case #2) applying the 
3D conformal transformation and ICP algorithm with raw point clouds generated from multiple images, and (Case #3) 

applying the 3D conformal transformation, ICP algorithm with noise-removed point clouds

Sensor RMSE (cm) Mean error (cm) Std. dev. of error (cm)
Case#1 Case#2 Case#3 Case#1 Case#2 Case#3 Case#1 Case#2 Case#3

Smart
phone 28.61 25.94 28.91 25.61 22.86 26.24 13.32 12.80 12.68

DSLR 23.69 27.58 24.93 22.89 26.02 23.77 6.35 9.55 7.86
Smart

phone and 
DSLR

18.23 13.93 13.23 14.99 10.03 9.14 10.83 10.09 9.98

(a) (b) (c) (d)
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twelve intersection points between the projected planes 
were extracted as the check points for quantitative accuracy 
assessment. A Fig. 10 presents point clouds projected on the 
XY plane and the labels of check points.

The Table 3 shows the locational inconsistency of check 
points. The RMSE of image-based 3D reconstruction was in 
the range from 13.2 cm to 28.9 cm depending on the types of 
the images and registration methods. The ICP algorithm could 
improve the accuracy of registration for the precise point sets 
from the entire images or DSLR images. However, the ICP 
algorithm may reduce the accuracy of registration if the point 
clouds contain many noise points like those, created by the 
smartphone images. When the initial parameters for the ICP 
algorithm were determined without the initial estimation of 
the parameters - like scale, rotation, and translation, the ICP 
algorithm did not work due to the existence of widespread noise.

3.4 3D outdoor modeling

Because of the insufficient accuracy and precision of 
the point clouds from the image-based 3D reconstruction 
technique, the terrestrial LiDAR scanning data was utilized for 
the as-built BIM in this research. The as-built BIM of an outdoor 
building was conducted using Autodesk’s Revit 2015 software 
(Autodesk, 2015), while Fig. 11 describes the model created on 
the basis of the LiDAR scanning data. As shown in Fig. 11, the 
roof, windows, stairs, and door components of testing building 
could be expressed by the terrestrial LiDAR data.

4. Conclusions

The study has compared the accuracy and the point 

density of the point clouds created from the image-based 3D 
reconstruction technique and the terrestrial LiDAR scanning 
data for as-built BIM of outdoor structures. Based on the 
outdoor experiment, the following conclusions were drawn:

1.  The image-based 3D reconstruction technique could 
obtain the rough shape of an outdoor building. There 
were 13.2∼28.9 cm of RMSE between the point 
clouds  generated from multiple images and the LiDAR 
scanning data.

2.  The resolution and the geometry of the captured images 
had an impact on the accuracy and the precision of point 
clouds created, via the image-based 3D reconstruction 
technique. The point clouds generated from the 
smartphone images had the largest number of noise with 
the lowest accuracy.

3.  The point clouds created from multiple images had 
numerous noise points that could not represent detail 3D 
information compared to the terrestrial LiDAR scanning 
data. However, the image-based 3D reconstruction 
techniques could not be the practical solution for the 
as-built BIM. For as-built BIM, those point clouds with 
centimeter level of accuracy and point density were 
necessary to represent the detail information of building 
components - such as door, window, wall, and roof.

Although the image-based 3D reconstruction technique 
holds potentials for as-built 3D urban modeling, there were 
problems that generated point clouds had relative scale, 
insufficient accuracy, and numerous noise points. Regarding 
to it, we could conclude that the terrestrial LiDAR is still the 
most practical solution for as-built 3D BIM construction. In 
the future study, our research team will plan to develop the 

Fig. 11. Result of the 3D modeling: (a) point clouds, (b) Geometric model, and (c) Rendered model

(a) (b) (c)
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noise filtering and the accuracy improving algorithms for 
the image-based 3D reconstruction. In addition, we expect a 
new techniques based on image big data to be developed as 
solutions for improving data quality.
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