• Title/Summary/Keyword: SmartQ

Search Result 156, Processing Time 0.025 seconds

Improved Ad Hoc On-demand Distance Vector Routing(AODV) Protocol Based on Blockchain Node Detection in Ad Hoc Networks

  • Yan, Shuailing;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.46-55
    • /
    • 2020
  • Ad Hoc network is a special wireless network, mainly because the nodes are no control center, the topology is flexible, and the networking could be established quickly, which results the transmission stability is lower than other types of networks. In order to guarantee the transmission of data packets in the network effectively, an improved Queue Ad Hoc On-demand Distance Vector Routing protocol (Q-AODV) for node detection by using blockchain technology is proposed. In the route search process. Firstly, according to the node's daily communication record the cluster is formed by the source node using the smart contract and gradually extends to the path detection. Then the best optional path nodes are chained in the form of Merkle tree. Finally, the best path is chosen on the blockchain. Simulation experiments show that the stability of Q-AODV protocol is higher than the AODV protocol or the Dynamic Source Routing (DSR) protocol.

Business Intelligence and Marketing Insights in an Era of Big Data: The Q-sorting Approach

  • Kim, Ki Youn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.567-582
    • /
    • 2014
  • The purpose of this study is to qualitatively identify the typologies and characteristics of the big data marketing strategy in major companies that are taking advantage of the big data business in Korea. Big data means piles accumulated from converging platforms such as computing infrastructures, smart devices, social networking and new media, and big data is also an analytic technique itself. Numerous enterprises have grown conscious that big data can be a most significant resource or capability since the issue of big data recently surfaced abruptly in Korea. Companies will be obliged to design their own implementing plans for big data marketing and to customize their own analytic skills in the new era of big data, which will fundamentally transform how businesses operate and how they engage with customers, suppliers, partners and employees. This research employed a Q-study, which is a methodology, model, and theory used in 'subjectivity' research to interpret professional panels' perceptions or opinions through in-depth interviews. This method includes a series of q-sorting analysis processes, proposing 40 stimuli statements (q-sample) compressed out of about 60 (q-population) and explaining the big data marketing model derived from in-depth interviews with 20 marketing managers who belong to major companies(q-sorters). As a result, this study makes fundamental contributions to proposing new findings and insights for small and medium-size enterprises (SMEs) and policy makers that need guidelines or direction for future big data business.

Exploring the Chasm in Smart Watch Market : Q-Method Study of Non-Adopters (스마트워치 시장의 캐즘(Chasm)에 관한 연구 : Q방법을 활용한 혁신수용 사례 분석)

  • Yoon, Sungwon;Lee, Jungwoo;Kim, Su Hyeong;Yoo, Chrong
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2019
  • The goal of this study is to find why the consumers are reacting slowly or negatively toward smartwatches. Even though, smartwatches provide useful information such as health care and text message, the market was not growing fast as expected, and seems to be stagnant at this point. Thus, the future market predictions are varied. To find out why this may have happened, a Q-method study using non-adopters was conducted. In order to find out depth explanations from each interviewers, the research team chose the Q method and Q sorting to classify the different reasons for non-adopters. Based on the interview, all participants were clustered with into groups with similar patterns of the answers. The research team classified the interview group to three categories 1) Technology Discontent 2) Service Discontent 3) Indifferent. The research team analyzed each category reasoning and logics. Also the team compared the result to the technology chasm as it was proposed by Rogers (1969) to measure the maturity of the consumers.

Improved Deep Q-Network Algorithm Using Self-Imitation Learning (Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘)

  • Sunwoo, Yung-Min;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning is a simple off-policy actor-critic algorithm that makes an agent find an optimal policy by using past good experiences. In case that Self-Imitation Learning is combined with reinforcement learning algorithms that have actor-critic architecture, it shows performance improvement in various game environments. However, its applications are limited to reinforcement learning algorithms that have actor-critic architecture. In this paper, we propose a method of applying Self-Imitation Learning to Deep Q-Network which is a value-based deep reinforcement learning algorithm and train it in various game environments. We also show that Self-Imitation Learning can be applied to Deep Q-Network to improve the performance of Deep Q-Network by comparing the proposed algorithm and ordinary Deep Q-Network training results.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Equal Energy Consumption Routing Protocol Algorithm Based on Q-Learning for Extending the Lifespan of Ad-Hoc Sensor Network (애드혹 센서 네트워크 수명 연장을 위한 Q-러닝 기반 에너지 균등 소비 라우팅 프로토콜 기법)

  • Kim, Ki Sang;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.269-276
    • /
    • 2021
  • Recently, smart sensors are used in various environments, and the implementation of ad-hoc sensor networks (ASNs) is a hot research topic. Unfortunately, traditional sensor network routing algorithms focus on specific control issues, and they can't be directly applied to the ASN operation. In this paper, we propose a new routing protocol by using the Q-learning technology, Main challenge of proposed approach is to extend the life of ASNs through efficient energy allocation while obtaining the balanced system performance. The proposed method enhances the Q-learning effect by considering various environmental factors. When a transmission fails, node penalty is accumulated to increase the successful communication probability. Especially, each node stores the Q value of the adjacent node in its own Q table. Every time a data transfer is executed, the Q values are updated and accumulated to learn to select the optimal routing route. Simulation results confirm that the proposed method can choose an energy-efficient routing path, and gets an excellent network performance compared with the existing ASN routing protocols.

Forisome based biomimetic smart materials

  • Shen, Amy Q.;Hamlington, B.D.;Knoblauch, Michael;Peters, Winfried S.;Pickard, William F.
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.225-235
    • /
    • 2006
  • With the discovery in plants of the proteinaceous forisome crystalloid (Knoblauch, et al. 2003), a novel, non-living, ATP-independent biological material became available to the designer of smart materials for advanced actuating and sensing. The in vitro studies of Knoblauch, et al. show that forisomes (2-4 micron wide and 10-40 micron long) can be repeatedly stimulated to contract and expand anisotropically by shifting either the ambient pH or the ambient calcium ion concentration. Because of their unique abilities to develop and reverse strains greater than 20% in time periods less than one second, forisomes have the potential to outperform current smart materials as advanced, biomimetic, multi-functional, smart sensors or actuators. Probing forisome material properties is an immediate need to lay the foundation for synthesizing forisomebased smart materials for health monitoring of structural integrity in civil infrastructure and for aerospace hardware. Microfluidics is a growing, vibrant technology with increasingly diverse applications. Here, we use microfluidics to study the surface interaction between forisome and substrate and the conformational dynamics of forisomes within a confined geometry to lay the foundation for forisome-based smart materials synthesis in controlled and repeatable environment.

Design of a physical layer of IEEE 802.15.4q TASK for IoT (IoT를 위한 IEEE 802.15.4q 기반 TASK 물리 계층 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • IoT has been consistently used in various fields such as smart home, wearables, and healthcare. Since IoT devices are small terminals, relatively simple wireless communication protocols such as IEEE 802.15.4 and ISO 18000 series are used. In this paper, we designed the 802.15.4q 2.4 GHz TASK physical layer. Physical protocol data unit of TASK supports bit-level interleaving and shortened BCH encoding. It is spread by unique ternary sequences. There are four spreading factors to choose the data rate according to the communication channel environment. The TASK physical layer was designed using verilog-HDL and verified through the loop-back test of the transceiver. The designed TASK physical layer was implemented in a fpga and tested using MAXIM RFICs. The PER was about 0% at 10 dB SNR. It is expected to be used in small, low power IoT applications.

A fast and simplified crack width quantification method via deep Q learning

  • Xiong Peng;Kun Zhou;Bingxu Duan;Xingu Zhong;Chao Zhao;Tianyu Zhang
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.219-233
    • /
    • 2023
  • Crack width is an important indicator to evaluate the health condition of the concrete structure. The crack width is measured by manual using crack width gauge commonly, which is time-consuming and laborious. In this paper, we have proposed a fast and simplified crack width quantification method via deep Q learning and geometric calculation. Firstly, the crack edge is extracted by using U-Net network and edge detection operator. Then, the intelligent decision of is made by the deep Q learning model. Further, the geometric calculation method based on endpoint and curvature extreme point detection is proposed. Finally, a case study is carried out to demonstrate the effectiveness of the proposed method, achieving high precision in the real crack width quantification.