References
- Baz, A. (2001), 'Vibration control with shape memory alloys', Encyclopedia of Vibration, Ed. by Simmons, Ewins and Rao, Academic Press
- Bennett, M. D. and Leo, D. J. (2003), 'Manufacture and characterization of ionic polymer transducers employing non-precious metal electrodes', Smart Mater. Struct., 12, 424-436 https://doi.org/10.1088/0964-1726/12/3/314
- Bray, D. (2001), Cell movements: from molecules to motility, 2nd ed. Garland Publishing
- Chua, C. L. Chollet, F. and He, J. (2003), 'Study of biological actuator and sensor: The mimosa pudica', Int. J. Comput. Eng., Sci., 559-562
- Culshaw, B. (1995), Smart Structure and Materials, Artech House, Boston, London
- Egusa, S. and Iwasawa, N. (1998), 'Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities', Smart Mater. Struct., 7, 438-445 https://doi.org/10.1088/0964-1726/7/4/002
- de Gennes, P. G. (1985), 'Wetting: statics and dynamics', Review of Modern Physics, 3, 827-863
- Ghoshal, A., Prosser, W. H., Kirikera, G., Schulz, M. J., Hughes, D. J. and Orisamolu, W. (2003), 'Concepts and development of bio-inspired distributed embedded wired/wireless sensor array architectures foracoustic wave sensing in integrated aerospace vehicles', 4th International Workshop on Structural Health Monitoring, California
- Giurgiutiu, V. and Rogers, V. (1997), 'Power and Energy characteristics of solid-state induced-strain actuators for static and dynamic applications', J. Intelligent Mater. Syst. Struct., 738-75
- Gobby, D., Angeli, P. and Gavriilidis, A. (2001), 'Mixing characteristics of T-type microfluidic mixers', J. Micromechanics, 11, 126-132 https://doi.org/10.1088/0960-1317/11/2/307
- Hetherington, A. M. and Woodward, F. I. (2003), 'The role of stomata in sensing and driving environmental change', Nature, 424, 901-908 https://doi.org/10.1038/nature01843
- Knoblauch, M., Noll, G. A., Muller, T., P겨ifer, D., Schneider-Huther, I., Scharner, D., van Bel, A. J. E. and Peters, W. S. (2003), 'ATP-independent contractile proteins from plants', Nature Materials, 2, 600-603 https://doi.org/10.1038/nmat960
- Knoblauch, M., Peters, W. S., Ehlers, W. S. and van Bel, A. J. E. (2001), 'Reversible calcium-regulated stopcocks in legume sieve tubes', Plant Cell, 13, 1221-1230 https://doi.org/10.1105/tpc.13.5.1221
-
Knoblauch, M. and Peters, W. S. (2004a), 'Forisomes, a novel type of Ca
$^{2+}$ -dependent contractile protein motor', Cell Motility and the Cytoskeleton 58, 137-142 https://doi.org/10.1002/cm.20006 - Knoblauch, M. and Peters, W. S. (2004b), 'Biomimetic actuators: where technology and cell biology merge', Cellular and Molecular Life Sciences, 61, 2497-2509 https://doi.org/10.1007/s00018-004-4158-0
- Kuhn, W., Hargitay, B., Katchalsky, A. and Eisenberg, H. (1950), 'Reversible dilatation and contraction by changing the state of ionization of high-polymer acid network', Science, 165, 514-516
- Lang, A. and Minchin, E. E. H. (1986), 'Phylogenetic distribution and mechanism of translocation inhibition by chilling', J. Experimental Botany, 37, 389-398 https://doi.org/10.1093/jxb/37.3.389
- Lin, M. and Chang, F. K. (2002), 'The manufacture of composite structures with a built-in network of piezoceramics', Composites Science and Technology, 62, 919-939 https://doi.org/10.1016/S0266-3538(02)00007-6
- Liu, S. C. and Tomizuka, M. (2003), 'Vision and strategy for sensors and smart structures technology research', Structural Health Monitoring, Ed. Fu-Kuo Chang
- Ma, K. (2003), 'Vibration control of smart structures with bonded PZT patches: novel adaptive filtering algorithm and hybrid control scheme', Smart Mater. Struct., 12, 473-482 https://doi.org/10.1088/0964-1726/12/3/319
- Mavroidis, C. and Dubey, A. (2003), 'Biornimetics: From pulses to motors', Nature, 2, 573 https://doi.org/10.1038/nmat973
- Nemat-Nasser, S. (2002), 'Micrornechanics of actuation of ionic polymer-metal composites', J. Appl. Phy., 92(5), 2899-2915 https://doi.org/10.1063/1.1495888
- Pickard, W. F. and Minchin, P. E. H. (1990), 'The transient inhibition of phloem translocation in phaseolus vulganis by abrupt temperature drops, vibration, and electric shock', J. Cyperimental Botany, 41, 1361-1369.
- Polla, D. L. and Francis, L. F. (1998), 'Processing and characterization of piezoelectric materials and integration into microelectromechanical systems', Annual Review of Materials Science, 28, 563-597 https://doi.org/10.1146/annurev.matsci.28.1.563
- Sahoo, H., Pavoor, T., Vancheeswaran, S. (2001), 'Actuators based on electroactive polymers', Current Science, 81, 743-746
- Shahinpoor, M. and Thompson, M. S. (1995), 'The venus flytrap as a model for a biomimetic material with built-in sensors and actuators', Materials Science and Engineering, C2, 229-233
- Shahinpoor, M. (2003), 'Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles - a review', Electrochimica Acta, 48, 2343-2353 https://doi.org/10.1016/S0013-4686(03)00224-X
- Stone, H. A. and Kim, S. (2001), 'Microfluidics: Basic issues, applications, and challenges', AICHE J., 47, 1250-1254 https://doi.org/10.1002/aic.690470602
- Stroock, A. Dertinger, S. Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. (2002), 'Chaotic mixer for Microchannels', Science, 295, 647-651 https://doi.org/10.1126/science.1066238
- Tadaki, T., Otsuka, K. and Shimizu, K. (1988), 'Shape memory alloys', Annual Review of Materials Science, 18, 25-30 https://doi.org/10.1146/annurev.ms.18.080188.000325
- Uchida, M. and Taya, M. (2001), 'Solid polymer electrolyte actuator using electrode reaction', Polymer, 42, 9281-9285 https://doi.org/10.1016/S0032-3861(01)00457-8
- Ueda, M. and Yamamura, S. (2000), 'Chemistry and biology of plant leaf movements', Angewandte Chemie International Edition, 39, 1400-1414 https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1400::AID-ANIE1400>3.0.CO;2-Z
- Xia, Y. and Whitesides, G. M. (1998), 'Soft lithography', Annual Review of Materials Science, 28, 153-184 https://doi.org/10.1146/annurev.matsci.28.1.153
- Yu, Q., Bauer, J., Beebe, D. and Moore, J. (2001), 'A responsive bio-mimetic hydrogel valve for microfluidics', Applied Physics Letters, 78, 2589-2591 https://doi.org/10.1063/1.1367010
Cited by
- Calcium powered phloem protein ofSEOgene family “Forisome” functions in wound sealing and act as biomimetic smart materials vol.9, pp.9, 2014, https://doi.org/10.4161/psb.29438
- The structure and functionality of contractile forisome protein aggregates vol.29, pp.2, 2008, https://doi.org/10.1016/j.biomaterials.2007.09.020
- Elastic properties of the forisome vol.34, pp.10, 2007, https://doi.org/10.1071/FP07132
- Gel Sensors and Actuators vol.33, pp.03, 2008, https://doi.org/10.1557/mrs2008.46
- Native and artificial forisomes: functions and applications vol.89, pp.6, 2011, https://doi.org/10.1007/s00253-011-3117-6
- Vorticella: A Protozoan for Bio-Inspired Engineering vol.8, pp.12, 2017, https://doi.org/10.3390/mi8010004
- A Biohybrid Microfluidic Valve Based on Forisome Protein Complexes vol.17, pp.6, 2008, https://doi.org/10.1109/JMEMS.2008.2007241
- Responsive polymers for nanoscale actuation vol.11, pp.7-8, 2008, https://doi.org/10.1016/S1369-7021(08)70146-9
- Product and technology innovation: What can biomimicry inspire? vol.32, pp.8, 2014, https://doi.org/10.1016/j.biotechadv.2014.10.002
- Bio-microfluidics: Biomaterials and Biomimetic Designs vol.22, pp.2, 2010, https://doi.org/10.1002/adma.200900821
- Sensors, smart structures technology and steel structures vol.4, pp.5, 2008, https://doi.org/10.12989/sss.2008.4.5.517
- Synthetic bio-actuators and their applications in biomedicine vol.7, pp.3, 2006, https://doi.org/10.12989/sss.2011.7.3.185
- Bio-inspired neuro-symbolic approach to diagnostics of structures vol.7, pp.3, 2006, https://doi.org/10.12989/sss.2011.7.3.229