• Title/Summary/Keyword: Smart fire control system

Search Result 36, Processing Time 0.029 seconds

Implementation of CAN-based Fire Detection System for Smart Home (스마트 홈을 위한 CAN 기반 화재 감지 시스템의 구현)

  • 이경창;김정희;이홍희
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.734-741
    • /
    • 2004
  • This paper presents a network based fire detection system using CAN, in order to evaluate feasibility of home automation protocol for smart home. In general, because a traditional fire detection system has an analog transmission method with 4-20mA current, it has several shortcomings such as weakness to noise. Hence, as an alternative to the traditional system, this paper presents the architecture of CAN based fire detection system and the design method of CAN communication network. Also, the performance of the suggested system is evaluated through an experimental testbed. Especially, CAN has several advantages such as low cost and easiness of implementation compared to Ethernet or ARCNET, which are low layer of BACNet. Therefore, if CAN is adopted as low layer of BACNet, the home automation system is implemented more effectively.

Smart Fire Image Recognition System using Charge-Coupled Device Camera Image (CCD 카메라 영상을 이용한 스마트 화재 영상 인식 시스템)

  • Kim, Jang-Won
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.77-82
    • /
    • 2013
  • This research suggested smart fire recognition system which trances firing location with CCD camera with wired/wire-less TCP/IP function and Pan/Tilt function, delivers information in real time to android system installed by smart mobile communication system and controls fire and disaster remotely. To embody suggested method, firstly, algorithm which applies hue saturation intensity (HSI) Transform for input video, eliminates surrounding lightness and unnecessary videos and segmentalized only firing videos was suggested. Secondly, Pan/Tilt function traces accurate location of firing for proper control of firing. Thirdly, android communication system installed by mobile function confirms firing state and controls it. To confirm the suggested method, 10 firing videos were input and experiment was conducted. As the result, all of 10 videos segmentalized firing sector and traced all of firing locations.

Implementation of Smart Control System based on Intelligent Dimming with LEDs

  • Lee, Geum-Boon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.127-133
    • /
    • 2016
  • In this paper, an intelligent dimming control system is designed and implemented with the human visual response function using CDS sensor, PIR sensor and temperature sensor, etc. The proposed system is designed to detect a moving object by PIR sensor and to control the LED dimming considering the human visual response. Also, the dimming of LED light can modulate on the app, and simultaneously control dimming in real-world environments with smart phone app. A high-temperature warning or a fire hazard information is transmitted to user's smart phone according to sensor values and Data graph are provided as part of data visualization. Connecting the hardware controller, the proposed intelligent smart dimming control system is expected to contribute to the power reduction interior LED, smart grid building and saving home combining with internet of things.

Web Based Smart Home Automation Control System Design

  • Hwang, Eui-Chul
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.70-76
    • /
    • 2015
  • The development of technology provides and increases security as well as convenience for humans. The development of new technology directly affects the standard of life thanks to smart home automatic control systems. This paper describes a door control, automatic curtain, home security (CCTV, fire, gas, safe, etc.), home control (energy, light, ventilation, etc.) and web-based smart home automatic controller. It also describes the use of ARM (Advanced RISC Machines) for automatic control of home equipment, a Multi-Axes Servo Controller using FPGA (Field Programmable Gate Array) and PLC (programmable logic controller). Additionally, it describes the development of a HTML editor using web auto control software. The tab loading time (7 seconds) is faster when using ARM-based web browser software instead of Chrome and Firefox is used because the browser has a small memory footprint (300M). This system is realized by web auto controller language which controls and uses PLCs that are easier than existing devices. This smart home automatic control technology can control smart home equipment anywhere and anytime and provides a remote interface through mobile equipment.

Development of Multi-purpose Smart Sensor Using Presence Sensor (재실 감지 센서를 이용한 다용도 스마트 센서 개발)

  • Cha, Joo-Heon;Yong, Heong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • This paper introduces a multi-purpose smart fusion sensor. Normally, this type of sensor can contribute to energy savings specifically related to lighting and heating/air conditioning systems by detecting individuals in an office building. If a fire occurs, the sensor can provide information regarding the presence and location of residents in the building to a management center. The system consists of four sensors: a thermopile sensor for detecting heat energy, an ultrasonic sensor for measuring the distance of objects from the sensor, a fire detection sensor, and a passive infrared sensor for detecting temperature change. The system has a wireless communication module to provide the management center with control information for lighting and heating/air conditioning systems. We have also demonstrated the usefulness of the proposed system by applying it to a real environment.

Building Control Box Attached Monitor based Color Grid Recognition Methods for User Access Authentication

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Khudaybergenov, Timur;Kim, Min Soo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2020
  • The secure access the lighting, Heating, ventilation, and air conditioning (HVAC), fire safety, and security control boxes of building facilities is the primary objective of future smart buildings. This paper proposes an authorized user access to the electrical, lighting, fire safety, and security control boxes in the smart building, by using color grid coded optical camera communication (OCC) with face recognition Technologies. The existing CCTV subsystem can be used as the face recognition security subsystem for the proposed approach. At the same time a smart device attached camera can used as an OCC receiver of color grid code for user access authentication data sent by the control boxes to proceed authorization. This proposed approach allows increasing an authorization control reliability and highly secured authentication on accessing building facility infrastructure. The result of color grid code sequence received by the unauthorized person and his face identification allows getting good results in security and gaining effectiveness of accessing building facility infrastructure. The proposed concept uses the encoded user access authentication information through control box monitor and the smart device application which detect and decode the color grid coded informations combinations and then send user through the smart building network to building management system for authentication verification in combination with the facial features that gives a high protection level. The proposed concept is implemented on testbed model and experiment results verified for the secured user authentication in real-time.

Study on IoT-based Map Inside the Building and Fire Perception System (IoT 기반 건물 내부 지도 및 화재 안내 시스템에 관한 연구)

  • Moon, Sung-Ryong;Cho, Joon-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • This paper is a study on IoT based map inside the building and fire perception system using microprocessor and LABVIEW program. The smart control system implemented in this paper is designed to identify the location of fire by using microprocessor, flame detection sensor, carbon monoxide sensor and temperature sensor, and to guide the optimal travel route through Zigbee communication. And the proposed system uses QR code to interoperate with smartphone. The coordinator control verified that the sensor value of the smart control system installed through the LABVIEW software was confirmed. The IoT based control system studied in this paper was implemented with Arduino mega board and LABVIEW software, and the operation status was confirmed by display device and coordination.

Design and Implementation of Surveillance and Combat Robot Using Smart Phone (스마트폰을 이용한 정찰 및 전투 로봇의 설계와 구현)

  • Kim, Do-Hyun;Park, Young-Sik;Kwon, Sung-Gab;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.93-98
    • /
    • 2011
  • In this paper, we propose the surveillance and combat robot framework for remote monitoring and robot control on the smart phone, which is implemented with the fusion technology called RITS(Robot technology & Information Technology System). In our implemented system, the camera phone mounted on the robot generates signals to control the robot and sends images to the smart phone of the operator. Therefore, we can monitor the surrounding area of the robot with the smart phone. Besides the control of the movement of the robot, we can fire the weapons armed on the robot by sending the fire command. From experimental results, we can conclude that it's possible to control the robot and monitor the surrounding area of the robot and fire the weapons in real time in the region where the 3G(Generation) mobile communication is possible. In addition, we controlled the robot using the 2G mobile communication or wired phone when the robot is in the visual range.

Fire Extinguisher Maintenance System using Smart NFC Communication and Real-Time Pressure Measurement (스마트 NFC 통신과 실시간 압력 측정을 이용한 소화기 유지관리 시스템)

  • Park, Byeng-Cheol;Park, Ki-Hong
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.403-410
    • /
    • 2017
  • In this paper, the fire extinguisher maintenance system using smart NFC communication and the real-time pressure measurement is proposed. The proposed system consists of three steps in the flow of information. The first step is to identify the fire extinguisher through NFC tagging in the fire extinguisher module using the smart device. The fire extinguisher appearance check and the real-time pressure measurement is performed in the second step, and the last step sends the check status information to the management server. In particular, the actual pressure value is calculated based on the angle of the green area and the indicating needle. Some experiments are conducted so as to verify the proposed system, and as a result, the proposed system shows that the administrator can effectively control the status information of fire safety check.

Design and Implementation of Prototype Anti-disaster Remote Control Robot Model using Smart Phone (스마트폰을 이용한 방재용 원격 조정 로봇의 프로토 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.221-227
    • /
    • 2014
  • This paper presented a design which was a minimized remote control robot. This remote control robot was created for preventing life damage from conflagrations, nuclear events and HF gas accidents. This robot's system based smart phone that had camera and GPS systems. When fire came out, The robot figured out that how big fire was, where the fire was started and various aspects of situations. And The robot broadcasted the informations to smart phone using mobile application and wi-fi camera. By doing these, the fire mans could more accurate and be easier to plan a strategy for saving life. The body of robot are 2 parts. One is a car and the other one is a remote controller. By the power, 1step to 10steps, of grabbing remote controller could change the car's speed to move. Also, The prototype robot was already confirmed its utility itself.