• Title/Summary/Keyword: Smart farm data

Search Result 216, Processing Time 0.027 seconds

A Study on Security Threats and Countermeasures in Smart Farm Environments (스마트 팜 환경에서 보안 위협 및 대응 방안에 관한 연구)

  • Sun-Jib Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • IoT, Big-data, AI, and Cloud technologies, which are core technologies of the 4th Industrial Revolution, have recently been applied to various fields and are being used as core technologies for new growth engines. Accordingly, these core technologies are applied to the agricultural field without exception, contributing to solving the problem of labor shortage, reducing production costs, and reducing environmental burden through remote and automated production without time and space constraints. However, as these core technologies are utilized, security incidents are occurring in the agricultural field as well. Accordingly, this study divides smart farms into three stages(Basic, Middle, and High) and presents the characteristics and security threats of each stage. In particular, as the number of container-based services and research increases under cloud platforms, we would like to suggest countermeasures focusing on security threats.

A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence (인공지능 기반 온실 환경인자의 시간영역 추정)

  • Lee, JungKyu;Oh, JongWoo;Cho, YongJin;Lee, Donghoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.277-284
    • /
    • 2020
  • To increase the utilization of the intelligent methodology of smart farm management, estimation modeling techniques are required to assess prior examination of crops and environment changes in realtime. A mandatory environmental factor such as CO2 is challenging to establish a reliable estimation model in time domain accounted for indoor agricultural facilities where various correlated variables are highly coupled. Thus, this study was conducted to develop an artificial neural network for reducing time complexity by using environmental information distributed in adjacent areas from a time perspective as input and output variables as CO2. The environmental factors in the smart farm were continuously measured using measuring devices that integrated sensors through experiments. Modeling 1 predicted by the mean data of the experiment period and modeling 2 predicted by the day-to-day data were constructed to predict the correlation of CO2. Modeling 2 predicted by the previous day's data learning performed better than Modeling 1 predicted by the 60-day average value. Until 30 days, most of them showed a coefficient of determination between 0.70 and 0.88, and Model 2 was about 0.05 higher. However, after 30 days, the modeling coefficients of both models showed low values below 0.50. According to the modeling approach, comparing and analyzing the values of the determinants showed that data from adjacent time zones were relatively high performance at points requiring prediction rather than a fixed neural network model.

Smart Livestock Research and Technology Trend Analysis based on Intelligent Information Technology to improve Livestock Productivity and Livestock Environment (축산물 생산성 향상 및 축산 환경 개선을 위한 지능정보기술 기반 스마트 축사 연구 및 기술 동향 분석)

  • Kim, Cheol-Rim;Kim, Seungchoen
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.133-139
    • /
    • 2022
  • Recently, livestock farms in Korea are introducing data-based technologies to improve productivity, such as livestock environment and breeding management, safe livestock production, and animal welfare. In addition, the government has been conducting a smart livestock distribution project since 2017 through the modernization of ICT-based livestock facilities in order to improve the productivity of livestock products and improve the livestock environment as a policy. However, the current smart livestock house has limitations in connection, diversity, and integration between monitoring and control. Therefore, in order to intelligently systemize all processes of livestock with intelligent algorithms and remote control in order to link and integrate various monitoring and control, the Internet of Things, big data, artificial intelligence, cloud computing, and mobile It is necessary to develop a smart livestock system. In this study, domestic and foreign research trends related to smart livestock based on intelligent information technology were introduced and the limitations of domestic application of advanced technologies were analyzed. Finally, future intelligent information technology applicable to the livestock field was examined.

Remote Monitoring with Hierarchical Network Architectures for Large-Scale Wind Power Farms

  • Ahmed, Mohamed A.;Song, Minho;Pan, Jae-Kyung;Kim, Young-Chon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1319-1327
    • /
    • 2015
  • As wind power farm (WPF) installations continue to grow, monitoring and controlling large-scale WPFs presents new challenges. In this paper, a hierarchical network architecture is proposed in order to provide remote monitoring and control of large-scale WPFs. The network architecture consists of three levels, including the WPF comprised of wind turbines and meteorological towers, local control center (LCC) responsible for remote monitoring and control of wind turbines, and a central control center (CCC) that offers data collection and aggregation of many WPFs. Different scenarios are considered in order to evaluate the performance of the WPF communications network with its hierarchical architecture. The communications network within the WPF is regarded as the local area network (LAN) while the communication among the LCCs and the CCC happens through a wide area network (WAN). We develop a communications network model based on an OPNET modeler, and the network performance is evaluated with respect to the link bandwidth and the end-to-end delay measured for various applications. As a result, this work contributes to the design of communications networks for large-scale WPFs.

The Development of Offshore Wind Resource Measurement System and Remote Monitoring System (해상기상관측 시스템 및 실시간 원격 모니터링시스템 개발)

  • Ko, Suk-Whan;Jang, Moon-Seok;Lee, Youn-Seop
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.72-77
    • /
    • 2011
  • The purpose for installation of offshore weather station is a measurement of wind resources and so on. If weather station is operated, it will be possible to analysis for wind resource and arrangement of wind farm by using measured data. In this paper, we carried out the development of offshore wind resource measurement system for measuring offshore wind resource. Also, In order to monitor for real-time wind data with 1 Hz, we installed the wireless transmission system. All wind characteristic data are sent to the server PC through the this system is connected outport of DataLogger. Transmitted wind data were used in order to look at in the Web-page and tablet PC on a real time basis in a graph. In this paper, we will introduce about the wind resource measurement and remote monitoring system that is the result of study.

A Study on the Design of Data Collection System for Growing Environment of Crops (작물 근권부 생장 환경 Data 수집 시스템 설계에 관한 연구)

  • Lee, Ki-Young;Jeong, Jin-Hyoung;Kim, Su-Hwan;Lim, Chang-Mok;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.764-771
    • /
    • 2018
  • Domestic and foreign agricultural environments nowadays are undergoing various changes such as aging of agricultural population, increase of earned population, rapid climate change, diversification of agricultural product distribution structure, depletion of water resources and limited cultivation area. In order to respond to various environmental changes in recent agriculture, practical use of Smart Greenhouse to easily record, store and manage crop production information such as crop growing information, growth environment and agriculture work log, Interest is growing. In this paper, we propose a system that collects the situation information necessary for growth such as temperature, humidity, solar radiation, CO2 concentration, and monitor the collected data, which can be measured in the rhizosphere of the crop. We have developed a system that collects data such as temperature, humidity, radiation, and growth environment data, which are measured by data obtained from the rhizosphere measuring section of a growing crop and measured by a sensor, and transmitted to a wireless communication gateway of 400 MHz. We developed the integrated SW that can monitor the rhythm environment data and visualize the data by using cloud based data. We can monitor by graph format and data format for visualization of data. The existing smart farm managed crops and facilities using only the data within the farm, and this study suggested the most efficient growth environment by collecting and analyzing the weather and growth environment of the farms nationwide.

Development of an Unmanned Land-Based Shrimp Farm Integrated Monitoring System (무인 육상 새우 양식장 통합 모니터링 시스템 개발)

  • Hyeong-Bin Park;Kyoung-Wook Park;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.209-216
    • /
    • 2024
  • Land shrimp farms can control the growth environment more stably than coastal ones, making them advantageous for high-quality, large-scale production. In order to maintain an optimal shrimp growth environment, various factors such as water circulation, maintaining appropriate water temperature, oxygen supply, and feed supply must be managed. In particular, failure to properly manage water quality can lead to the death of shrimp, making it difficult to have people stationed at the farm 24 hours a day to continuously manage them. In this paper, to solve this problem, we design an integrated monitoring system for land farms that can be operated with minimal manpower. The proposed design plan uses IoT technology to collect real-time images of land farms, pump status, water quality data, and energy usage and transmit them to the server. Through web interfaces and smartphone apps, administrators can check the status of the farm stored on the server anytime, anywhere in real time and take necessary measures. Therefore, it is possible to significantly reduce field work hours without the need for managers to reside in the farm.

An Optimization Model for O&M Planning of Floating Offshore Wind Farm using Mixed Integer Linear Programming

  • Sang, Min-Gyu;Lee, Nam-Kyoung;Shin, Yong-Hyuk;Lee, Chulung;Oh, Young-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.255-264
    • /
    • 2021
  • In this paper, we propose operations and maintenance (O&M) planning approach for floating offshore wind farm using the mathematical optimization. To be specific, we present a MILP (Mixed Integer Linear Programming that suggests the composition of vessels, technicians, and maintenance works on a weekly basis. We reflect accessibility to wind turbines based on weather data and loss of power generation using the Jensen wake model to identify downtime cost that vary from time to time. This paper also includes a description of two-stage approach for maintenance planning & detailed scheduling and numeric analysis of the number of vessels and technicians on the O&M cost. Finally, the MILP model could be utilized in order to establish the suitable and effective maintenance planning reflecting domestic situation.

Smart Farm Control System for Improving Energy Efficiency (에너지 효율 향상을 위한 스마트팜 제어 시스템)

  • Choi, Minseok
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.331-337
    • /
    • 2021
  • The adaptation of smartfarm technology that converges ICT is increasing productivity and competitiveness in the agriculture. Technologies have been developed that enable environmental monitoring through various sensors and automatic control of the cultivation environment, and researches are underway to advance smartfarm technology using data generated from smartfarms. In this paper, an environmental control method to reduce the energy consumption of a smartfarm by using the environment and control data of the smartfarm is proposed. It was confirmed that energy consumption could be reduced compared to an independent environmental control method by creating an environmental prediction model using accumulated environmental data and selecting a control method to minimize energy consumption in a given situation by considering multiple environmental factors. In the future, research is needed to obtain higher energy efficiency through the advancement of the predictive model and the improvement of the complex control algorithms.

A Study on Estimating the Vegetable Cultivation Complex Area using Aerial Photogrammetry (항공사진측량을 이용한 채소주산단지 재배면적 추정 연구)

  • BAE, Kyoung-Ho;HAM, Geon-Woo;LEE, Jeong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.108-118
    • /
    • 2018
  • Recently, agricultural sector apply ICT technology such as Smart Farm to pursue innovation in the changing situation that is emerging as the fourth industrial revolution. However, this innovation requires techniques for forecasting and analyzing in various data bases and spatial information provides such infrastructure data. In this study, the cultivation area of Chinese cabbage, radish, garlic, onion, and red pepper were calculated and analyzed by year. The purpose of this analysis is to cope with sudden changes in vegetable crops and changes in cultivated area caused by weather changes to supply and demand of major vegetables and price instability. As a result of this study, spatial information based on time series information of vegetable complex will be used as efficient agricultural environment observation data, as well as interpretation of various spatial ranges such as the estimation of cultivation area using remote sensing.