• Title/Summary/Keyword: Smart cultivation

Search Result 149, Processing Time 0.023 seconds

Assessment of Water Control Model for Tomato and Paprika in the Greenhouse Using the Penman-Monteith Model (Penman-Monteith을 이용한 토마토와 파프리카의 증발산 모델 평가)

  • Somnuek, Siriluk;Hong, Youngsin;Kim, Minyoung;Lee, Sanggyu;Baek, Jeonghyun;Kwak, Kangsu;Lee, Hyondong;Lee, Jaesu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.209-218
    • /
    • 2020
  • This paper investigated actual crop evapotranspiration (ETc) of tomato and paprika planted in test beds of the greenhouse. Crop water requirement (CWR) is the amount of water required to compensate ETc loss from the crop. The main objectives of the study are to assess whether the actual crop watering (ACW) was adequate CWR of tomato and paprika and which amount of ACW should be irrigated to each crop. ETc was estimated using the Penman-Monteith model (P-M) for each crop. ACW was calculated from the difference of amount of nutrient supply water and amount of nutrient drainage water. ACW and CWR of each crop were determined, compared and assessed. Results indicated CWR-tomato was around 100 to 1,200 ml/day, while CWR-paprika ranged from 100 to 500 ml/day. Comparison of ACW and CWR of each crop found that the difference of ACW and CWR are fluctuated following day of planting (DAP). However, the differences could divide into two phases, first the amount of ACWs of each crop are less than CWR in the initial phase (60 DAP) around 500 ml/day and 91 ml/day, respectively. Then, ACWs of each crop are greater than the CWR after 60 DAP until the end of cultivation approximately 400 ml/day in tomato and 178 ml/day in paprika. ETc assessment is necessary to correctly quantify crop irrigation water needs and it is an accurate short-term estimation of CWR in greenhouse for optimal irrigation scheduling. Thus, reducing ACW of tomato and paprika in the greenhouse is a recommendation. The amount of ACW of tomato should be applied from 100 to 1,200 ml/day and paprika is 100 to 500 ml/day depend on DAP.

Medium characteristics during the outdoor-composting stage of medium preparation with a prototype medium turner in button mushroom cultivation (양송이 배지교반기 시제품을 활용한 배지 조제시 야외 발효단계별 배지의 특성)

  • Lee, Chan-Jung;Yu, Byeong-Kee;Lee, Eun-Ji;Park, Hae-Sung;Kong, Won-Sik;Kim, Yeong-Ho
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2018
  • This study was performed to compare medium characteristics during the composting stage for medium turning performed using an excavator agitator and a prototype medium turner in button mushroom cultivation. The changes in temperature in the medium did not significantly differ between the treatments until the 3rd turn performed using the excavator agitator. However, during the 4th and 5th turns, the temperature increased during turning with the prototype medium turner. During outdoor composting, various types of microorganisms such as thermophilic bacteria (Bacillus spp.), Actinomycetes, fluorescent Pseudomonas spp., and filamentous fungi were found to be distributed in the medium. The counts of aerobic bacteria and fluorescent Pseudomonas spp. did not significantly differ between treatments, and the counts of thermophilic bacteria and thermophilic actinomycetes were slightly higher during turning with the prototype medium turner. The rice straw was slightly shorter and water content lower for the prototype medium turner. There was no significant difference between pH and EC treatments. The L, a, and b values tended to increase on turning with the prototype medium turner.

Development of Ubiquitous Rice Intake Management Systems for Rice Processing Complex (미곡종합처리장을 위한 유비쿼터스 벼 반입관리 시스템 개발)

  • Lee, Hyo Jai;Kim, Oui Woung;Kim, Hoon;Kim, Byeong-Sam;Han, Jae-Woong;Han, Chung Su;Jung, Jae-Yoon
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.175-189
    • /
    • 2013
  • In this paper, an rice intake management system based on ubiquitous computing technology is introduced for rice processing complex (RPC). This system plays an important role in the quality management for rough rices in that the system provides timely and useful information of rice cultivation. The intake management system is developed by utilizing widespread ubiquitous technologies, such as smartphones, GIS and LBS, for the purpose of controling the harvest time and monitoring the quality of paddy. The information for rice production, cultivation and quality management is transmitted and stored in a centralized database via mobile networks, On the basis of these information, the harvest schedule is determined and notified to farmers though smart devices. Hence, the proposed system can help to establish trust among farmers, operators and consumers by providing systematic information based on ubiquitous computing technology.

Improvement of Salt Accumulated Soil and Crop Growth using Coal Ash (석탄회를 이용한 염류집적 토양 개선과 작물 생육 증진)

  • Lee, Jong Cheol;Oh, Se Jin;Kang, Min Woo;Kim, Young Hyun;Kim, Dong Jin;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • BACKGROUND: Cultivation area using agricultural plastic film facilities in Korea is rapidly increasing every year; however, it accelerates the salt accumulation in soils due to repeated cultivation and excessive use of chemical fertilizers. Coal ash contains various trace elements and has high potential to be used in agricultural purposes. This research was aimed to improve the quality of salts-accumulated soils and crop growth grown in the plastic film facilities using the soil amendment derived from coal ash and zero-valent iron powder. METHODS AND RESULTS: Soil amendment used in the study was manufactured using coal ash with iron powder and subjected to a typical upland soil for soil quality enhancement and two salts-accumulated soils for crop growth. After one month incubation of the salts-accumulated soils treated with the soil amendment, soil pH increased significantly and soil EC decreased by approximately 50%, compared to the control or the treatment without the soil amendment. Since the soil salts' concentration is proportional to EC, the subjected soil amendment can be proposed as an effective way to overcome soil salts accumulation in agricultural plastic film facilities. For crop growth, the length of roots and stems increased by approximately 10% and the dry weight also increased by a maximum of 75%, compared to the control. CONCLUSION: The soil amendment made from waste resources such as coal ash and zero-valent iron was found to not only be effective in improving salt-accumulated soils and crop yield but also be safe against harmful heavy metals.

Analysis of the behavior of microorganisms isolated from the medium during cultivation of Agaricus bisporus (button mushroom) (양송이 재배 중 배지에서 분리한 미생물의 상호작용 분석)

  • Min, Gyeong-Jin;Park, Hae-sung;Lee, Eun-Ji;Yu, Byeong-kee;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.19 no.2
    • /
    • pp.103-108
    • /
    • 2021
  • This experiment investigates the characteristics of microorganisms isolated from a medium during cultivation process and reveals the relationship between these microorganisms and the growth of Agaricus bisporus. The domestically grown strains of Agaricus bisporus displayed a higher inhibition growth rate against microorganisms isolated from straw, chicken manure, and medium than imported strains. As for inhibition of mycelial growth among mushroom cultivars of the microorganisms separated by each fermentation step from the mushroom medium, the domestic cultivar, 'Saedo,' grew more vigorously among other cultivars. As the fermentation progressed, it was confirmed that inhibitation of microorganisms against Agaricus bisporus was weakened. A total of 21 strains of microorganisms that promote mushroom growth were isolated in the 4th turning process, and the microorganisms isolated from the mushroom medium affect the growth and as yield of the mushroom through secretory substances.

Evaluation of Plant Available Nutrient Levels Using EC Monitored by Sensor in Pepper and Broccoli Soil (고추와 브로콜리 토양의 센서 전기전도도 값과 유효태 양분 함량의 관계 평가)

  • Su Kyeong Sin;Jeong Yeon Kim;Jin Hee Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.328-335
    • /
    • 2023
  • For appropriate nutrient management and enhanced plant growth, soil sensors which reflect soil nutrient levels are required. Because there is no available sensor for nutrient monitoring, electrical conductivity (EC) sensor can be used to evaluate soil nutrient levels. Soil nutrient management using EC sensors would be possible by understanding the relationship between sensor EC values and soil temperature, moisture, and nutrient content. However, the relationship between soil sensor EC values and plant available nutrients was not investigated. Therefore, the objectives of the study were to evaluate effect of different amount of urea on soil EC monitored by sensors during pepper and broccoli cultivation and to predict the plant available nutrient contents in soil. During the cultivation period, soil was collected periodically for analyzing pH and EC, and the available nutrient contents. The sensor EC value increased as the moisture content increased, and low fertilizer treated soil showed the lowest EC value. Principal component analysis was performed to determine the relationship between sensor EC and available nutrients in soil. Sensor EC showed a strong positive correlation with nitrate nitrogen and available Ca. In addition, sum of available nutrients such as Ca, Mg, K, P, S and N was positively related to the sensor EC values. Therefore, EC sensors in open field can be used to predict plant available nutrient levels for proper management of the soil.

Development of a functional game device and Contents for improving of brain activity through finger exercise (뇌활동 증진을 위한 손가락 운동용 기능성 게임 장치 및 콘텐츠 개발)

  • Ahn, Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1384-1390
    • /
    • 2012
  • It is well known that the exercising and stimulating of fingers have an important bearing on the brain. We take note of the fact and develope a game device for improving one's health and brain ability in respect of the education and training. Especially, we develope the device focused on the balanced exercising of five finger for improving brain function. The game device is possible to used in two-ways, namely online and off-line mode. In online mode, the device is connected with other visual devices such as smart phone and smart TV and communicated with Bluetooth and it is used as a MMI(multi-modal interface) device. Whereas, in off-line mode the game device works independently and it makes possible to enjoy auditorial and tactual games without video images for promotion of brain activity and emotional cultivation. For certification of the device, we implement two games(a fishing game for off-line mode and a shooting game for online mode) for people of all age, especially good for the elderly. It is usable as a game device to offering the elderly a great help for preventing impairment of the cognitive functions.

Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.) (부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향)

  • Kim, Young-Nam;Cho, Ju Young;Yoon, Young-Eun;Choe, Hyoen Ji;Cheong, Mi Sun;Lee, Mina;Kim, Kwon-Rae;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.

Influence of Hanwoo (Korean Native Cattle) Manure Compost Application in Soil on the Growth of Maize (Zea mays L.) (한우퇴비 시용에 따른 옥수수(Zea mays L.)의 생육에 미치는 영향)

  • Byeon, Ji-Eun;Lee, Jun Kyung;Park, Min-Soo;Jo, Na Yeon;Kim, Soo-Ryang;Hong, Sung-ha;Lee, Byong-O;Lee, Myung-Gyu;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.164-171
    • /
    • 2022
  • We studied the influence of Hanwoo (Korean native cattle) manure compost soil application on the growth and yield of maize (Zea mays L.). We compared the soil application of chemical fertilizer (CF), commercial manure (CM), Hanwoo manure (HM), and the mixed Hanwoo manure and chemical fertilizer (HM + CF). CF application showed faster tasseling and silking dates compared to the other treatments. During the early plant growth stage of maize, CF application resulted in taller plant height, However, during later growth stages (55 days after transplanting). HM (226.0 cm) and HM + CF (230.0 cm) treatment resulted in taller plant height compared to CF (216.2 cm). Post-harvest measurement results showed that, the ear length was longer in HM (22.13 cm) and HM + CF (22.70 cm) compared to others, while ear diameter, ear weight, and 100-grains weight showed no significant difference among CF, HM, and HM + CF groups. The use of HM resulted in delayed growth during the early stages of plant development compared to CF. However, crop productivity markers of ear weight and ear diameter showed no significant difference compared to CF. Thus, HM treatment was comparable to CF treatment in maize cultivation.

Cycle-by-Cycle Plant Growth Automatic Control Monitoring System using Smart Device (스마트기기를 이용한 주기별 식물 생장 인식 자동 제어 모니터링 시스템)

  • Kim, Kyong-Ock;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.745-750
    • /
    • 2013
  • In many recent studies, a variety of environmental control system for practical gardening facilities such as facility house and plant factory have been proposed. However, the plants have been exposed to growth disorder and disease and pest injury because the temperature and humidity have not properly controlled so far. Therefore, a lot of damage of farmers have been reported. The air circulation fan and industrial dehumidifier have been currently utilized as the countermeasures, but they do not meet the expectation. In this study, the growth phase of each plant is recognized by using cycle-by-cycle plants growth recogniztion algorithm to provide optimal environment according to the growth phases of each plant.he productivity can be raised by using cycle-by-cycle plant growth recognition monitoring system because it optimally controls the environment by cycle that is required for plant growth.